K ITAHARA L AB

トップ 管理者紹介 研究・教育 授業 研究室
研究室日誌 みなさんへ 数理科学科 理学部 関西学院大学
Kitahara Lab All Rights Reserved (2022年10月27日更新)

応用数理III

■授業目的

本講義の目的は、スプライン関数の基本的な性質とその応用となる問題を解くための計算力を身につけることである。大学院との合併開講であるが,課題については学部用の課題を解く。



■到達目標

下記項目を修得することを到達時の目標とする
[1]スプライン関数の定義とその基本的性質を説明できる。
[2]最も滑らかな補間関数を求めることができる。
[3]ペアノの定理を用いて、線形汎関数の近似となる線形汎関数を求めることができる。


■各回ごとの授業内容

1. 関数空間
2. ワイエルストラスの多項式近似定理の準備
3. ワイエルストラスの多項式近似定理
4. 多項式補間とルンゲの現象
5. スプライン関数の定義と表現
6. 最も滑らかな補間関数
7. 授業中試験
8. 自然スプラインとCスプラインの性質
9. 自然スプラインによる補間
10.線形汎関数の近似
11.線形汎関数の最良近似に関するSardの定義
12.自然スプラインによる線形汎関数の近似
13.線形汎関数の最良近似を求める解法
14.線形汎関数の最良近似を求める別解法


微分積分 I 線形代数学 I 解析学 II 応用数理 V 数値解析特論 II
数理科学特別演習 I 数理科学特別演習 II

トップ 管理者紹介 研究・教育 授業 研究室
研究室日誌 みなさんへ 数理科学科 理学部 関西学院大学