原著論文
Soyano T, Akamatsu A, Takeda N, Watahiki M, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara
H, Nakajima K, Kawaguchi M (2024)
Periodic cytokinin responses in Lotus japonicusrhizobium infection and nodule development
Science 19;385(6706):288-29
FukudaH, MamiyaR, Akamatsu A, Takeda N* (2024)
Two LysM receptor-like kinases regulate arbuscular mycorrhiza through distinct
signaling pathways in Lotus japonicus
New Phytologist, 243: 519–525
Miyata K, Hosotani M, Akamatsu A, Takeda N, Wendi J, Sugiyama T, Takaoka R, Matsumoto K, Abe A, Shibuya N, Kaku H
(2023)
OsSYMRK Plays an Essential Role in AM Symbiosis in Rice (Oryza sativa)
Plant and Cell Physiol, 61: 565–575
Akamatsu A, Nagae M, Takeda N* (2022)
The CYCLOPS Response Element in the NINpromoter is Important but not Essential for Infection Thread Formation
During Lotus japonicus-Rhizobia Symbiosis
Mol Plant Microbe Interact, 5:8:650–658 doi: 10.1094/MPMI-10-21-0252-R
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N* (2021)
Endogenous gibberellins affect root nodule symbiosis via transcriptional
regulation of NODULE INCEPTION in Lotus japonicus
Plant Journal, 105: 1507–1520
2011 ~2020
Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M, Kaminaka H (2020)
Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular
Mycorrhizal Symbiosis in Eustoma grandiflorum
Plant and Cell Physiol, 61: 565–575
Suzaki T, Takeda N, Nishida H, Hoshino M, Ito M, Misawa F, Handa Y, Miura K, Kawaguchi M
(2019)
LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation
in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
PLoS Genet. 31:15:e1007865
Maeda T, Kobayashi Y, Kameoka H, Okuma N, Takeda N, Yamaguchi K, Bino T, Shigenobu T, Kawaguchi M (2018)
Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity
in Rhizophagus irregularis
Communications Biology1:87
Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N, Nakagawa T, Barker DG, Genre A. (2017)
The rice LysM receptor-like kinase OsCERK1 is required for the perception
of short-chain chitin oligomers in arbuscular mycorrhizal signaling.
New Phytologist214:1440-1446
Nagae M, Parniske M, Kawaguchi M. Takeda N* (2016)
The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation
Plant Physiology 172:2033-43 *Corresponding author
Nagae M, Parniske M, Kawaguchi M, Takeda N* (2016)
The relationship between thiamine and two symbioses: Root nodule symbiosis
and arbuscular mycorrhiza
Plant Signaling & Behavior e1265723
Tsuzuki S, Handa Y, Takeda N, Kawaguchi M. (2016)
Strigolactone-induced putative secreted protein 1 is required for the establishment
of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis
Molecular Plant Micoribe Interactions 29:277-86
Takeda N*, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. (2015)
Gibberellins Interfere with Symbiosis Signaling and Gene Expression, and
Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus.
Plant Physiology 167:545-57 *Corresponding author
<表紙画像の提供 Plant Physiology 2015年2月号>
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. (2015)
RNA-seq transcriptional Profiling of Arbuscular mycorrhiza provides insights
into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus
irregularis
Plant Cell Physiology 56:1490-511
Takeda N*, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. (2015)
Gibberellin regulates infection and colonization of host roots by arbuscular
mycorrhizal fungi
Plant Signaling & Behavior 10:1-3 *Corresponding author
Nagae M, Takeda N*, Kawaguchi M (2014)
Common symbiosis genes CERBERUS and NSP1 provide additional insight into
the establishment of arbuscular mycorrhizal and root nodule symbioses in
Lotus japonicus
Plant Signaling & Behavior e28544.
*Corresponding author
Suzaki T, Ito M, Yoro E, Sato S, Hirakawa H, Takeda N, Kawaguchi M (2014)
Endoreduplication-mediated initiation of symbiotic organ development in
Lotus japonicus
DevelopmentVol141:2441-5.
Takeda N*, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M. (2013)
CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate
arbuscular mycorrhiza development.
Plant Cell PhysiologyVol54:1711-23 featured on the Research Highlights
*Corresponding author
Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S,
Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M. (2013)
TOO MUCH LOVE, a novel kelch repeat-containing F-box protein, functions
in the long-distance regulation of the legume-Rhizobium symmbiosis.
Plant Cell Physiology Vol54:433-47
Suzaki, T, Kim, C.S, Takeda, N, Szczyglowski, K. and Kawaguchi, M. (2013)
TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule
development and shoot apical meristem maintenance in Lotus japonicus.
DevelopmentVol.140:353-361
Takeda N, Maekawa T, Hayashi M. (2012)
Nuclear-localized and deregulated calcium- and calmodulin-dependent protein
kinase activates rhizobial and mycorrhizal responses in Lotus japonicus.
Plant CellVol.24:810-22
Takeda N, Haage K, Sato S, Tabata S, and Parniske M. (2011)
Activation of a Lotus japonicus subtilase gene during arbuscular mycorrhiza
is controlled by the common symbiosis genes and two cis-active promoter
elements.
Molecular Plant-Microtbe interactions Vol.24:662-70
Ikeda S, Okubo T, Takeda N, Banba M, Sasaki K, Imaizumi-Anraku H, Fujihara S, Ohwaki Y, Ohshima K,
Fukuta Y, Eda S, Mitsui H, Hattori M, Sato T, Shinano T, Minamisawa K.
(2011)
The Genotype of the Calcium/Calmodulin-Dependent Protein Kinase Gene (CCaMK)
Determines Bacterial Community Diversity in Rice Roots under Paddy and
Upland Field Conditions.
Applied and Environmental Microbiology Vol.13:4399-405
~2010
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske
M (2010)
Impaired Rhizodermal Symbiotic Response of the Nucleoporin Mutant nena
Reveals Disposition for Intercellular Rhizobial Infection in Lotus japonicus
Plant Cell. Vol.22:2509-26
Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. (2009)
Apoplastic Plant Subtilases Support Arbuscular Mycorrhiza Development in
Lotusjaponicus.
Plant Journal. Vol.58: 766-777 <表紙画像の提供 Plant Journal 2009年6月号>
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A,
Parniske M. (2009)
The Temperature-Sensitive brush Mutant of the Legume Lotus japonicus Reveals
a Link between Root Development and Nodule Infection by Rhizobia.
Plant Physiology. Vol. 149:1785-96
Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M. (2009)
Gibberellin controls the nodulation signaling pathway in Lotus japonicus.
Plant Journal. Vol.58:183-94
Charpentier M, Bredemeier R, Wanner G,Takeda N, Schleiff E, Parniske M. (2008)
Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear
calcium spiking in legume root endosymbiosis.
Plant Cell. Vol. 20:3467-79.
Takeda N, Okamoto S, Hayashi M, Murooka M. (2005)
Expression of LjENOD40 genes in response to symbiotic and non-symbiotic
signals: LjENOD40-1 and LjENOD40-2 are differentially regulated in Lotus
japonicus.
Plant & Cell Physiology Vol.48:1291-8.
Imaizumi-Anraku H*, Takeda N*, (and 20 collaborators)(2005)
Plastid proteins crucial for symbiotic fungal and bacterial entry into
plant roots.
Nature Vol. 433: 527-531.
*these authors are equally contributed
総説・著書
Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M, Sato S, Kaneko T,
Tabata S, Parniske M.
Proteases in plant root symbiosis.
Phytochemistry. Vol. 68:111-21 (2007)
武田直也 (2010)
植物の中の樹 細胞工学 Vol.29:123
その他
表紙画像の提供
Plant Physiology 2015年2月号
Plant Journal 2009年6月号