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1. Invertible distributions

1. P (D) ̸= 0: C∞(Rn) → C∞(Rn) is surjective (Ehrenpreis,
Malgrange, ’56)
(arbitrary linear PDOp with const. coeffs.)
Convolution with P (D)δ(xxx).

2. Translation : C∞(Rn) → C∞(Rn); u(xxx) → u(xxx−aaa) is
surjective.
Convolution with δ(xxx−aaa).

A compactly supported distribution u ∈ E ′(Rn) is called

invertible if u∗ : C∞(Rn) → C∞(Rn) is surjective (Ehrenpreis).

( Only the existence of the right inverse is required. )



2. invertibility and slow decrease

Theorem (Ehrenpreis ’60 cf. Hörmander ’62, ’83)
If u ∈ E ′(Rn), the following conditions are equivalent:

1. u is invertible (u∗ : C∞(Rn) → C∞(Rn) is surjective)

2. The Fourier transform of u is slowly decreasing in the
following sense:
∃A> 0 s. t.

sup{|û(ηηη)| ; ηηη ∈ Rn, |ηηη− ξξξ|<A log(2+ |ξξξ|)}> (A+ |ξξξ|)−A

for ∀ξξξ ∈ Rn.

û is allowed to have zeros.
Existence of peaks is good enough.



3. Known invertible distributions
1.

∑J
j=1Pj(D)δ(xxx−aaaj) ̸= 0 is invertible (probably Hörmander).

2. The delta function supported by the sphere |xxx| = r is
invertible (Lim, 2012).

3. Its normal derivatives of arbitrary order are invertible
(Okada-Y, 2021).

4. If u1 and u2 are invertible, so is u1 ∗u2．

5. Invertibility is preserved under translation and dilation．

6. If u(xxx) and v(yyy) are invertible, so is u(xxx)v(yyy).

We want more examples and sufficient conditions．



4. Fourier transform and finite Hankel transform
We try to find radial functions with compact support that are
invertible．
Let f0(s) be a function in a single variable with suppf0 ⊂ [0,1].
Set f(xxx) = f0(|xxx|), xxx ∈ Rn(radial). Then

f̂(ξξξ) = const.
rn/2−1

∫ 1

0
sn/2f0(s)Jn/2−1(rs)ds,

r = |ξξξ|, ξξξ ∈ Rn.

We want to prove f̂(ξξξ) is slowly decreasing (⇔ f(xxx) is invertible)
under certain conditions.

Estimating
∫ 1

0 s
n/2f0(s)Jn/2−1(rs)ds (function in r = |ξ|) is the

key.



5. Asymptotic expansion of finite Hankel transforms
φ(s) smooth in 0< s < 1．

Behavior of
∫ 1

0 φ(s) Jn/2−1(rs)ds is determined by the
singularities at the left and right ends: s → +0 and
s → 1−0.

Two assumptions:
1. φ(s) has an expansion by powers of s at the left end.
2. s−n/2φ(s) has an expansion by powers 1−s2 at the right end.

Three tools:
1. some kind of cut-off, contributions from the two ends are

separated
2. the left end: Roderick Wong’s result (’76)
3. the right end: Sonine’s first finite integral, integration by parts

based on the ladder operator



6. The left end (s → +0)

By using the result of Wong ’76, we get the following.
Let φ(s) be C∞ in (0,1) and Re(µ+ν)>−1，
Assume φ(j)(s) ∼

∞∑
k=0

ck
dj

dsj
sµ+k (s→ +0; j = 0,1,2, . . .)

Let χ0(s) be a cutoff function which is 1 near the left end
and set

K :=K (µ,ν,{ck}k) =
{
k ∈ N0 ; ck ̸= 0, 1

2
(µ+k−ν−1) ̸∈ N0

}
,

Assume K ̸= ∅ and set k0 = minK. Then as r → ∞

∫ 1

0
χ0(s)φ(s)Jν(rs)ds∼ ck0

Γ
(

1
2(µ+k0 +ν+1)

)
2µ+k0

Γ
(

1
2(µ+k0 −ν−1)

) r−(µ+k0+1).

Coeffs may vanish ⇐ poles of the Gamma function.



7.The right end (s → 1−0)

Assume s−n/2φ(s) has an expansion by powers 1−s2 at the right
end.
We can use Sonine’s first finite integral∫ 1

0
sν+1

(
1−s2

)α
Jν(rs)ds= 2αΓ(α+1)r−(α+1)Jν+α+1(r).

The behavior of the right hand side can be calculated by using

Jα(r) = 21/2

π1/2 r
−1/2 cos

(
r− απ

2
− π

4

)
+O(r−3/2).



8. Main theorem (Okada-Y, SIGMA last week)

Let φ(s) be a C∞ function in (0,1). Assume Re(µ+n/2)> 0 and

φ(j)(s) ∼
∞∑

k=0
ck
dj

dsj
sµ+k, c0 ̸= 0 (s→ +0; j = 0,1,2, . . .)

Assume −1< Reλ0 < Reλ1 < · · ·< Reλm < ReΛ, N ≤ ReΛ,
Reλ0 ≤N −1 and

s−n/2φ(s) =
m∑

k=0
ak(1−s2)λk +(1−s2)Λψ(s2), a0 ̸= 0 (near s= 1)

Here ψ(·) is sufficiently regular.
Then,

f(xxx) := |xxx|−n/2φ(|xxx|)χ[0,1](|xxx|) (xxx ∈ Rn; n≥ 2)

is
:::::::::
invertible．Here χ[0,1](·) is the indicator function of [0,1].



9. Proof
Prof. Wong’s result near the left end, Sonine near the right end．
Difficulty:
cutoff near s= 1 destroys Sonine-type integrand

(
1−s2)α.

Incomplete cutoff near s= 1 : we consider

m∑
k=0

ak(1−s2)λk

︸ ︷︷ ︸
Sonine preserved

+χ1(s2)︸ ︷︷ ︸
cutoff

(1−s2)Λψ(s2).

Hankel transform behaves like const.×power of r×cos.

Usual cutoff near s= 0 of the difference of φ(s) and the Sonine
terms

φ̃(s) := χ0(s)
{
φ(s)−sn/2

m∑
k=0

ak(1−s2)λk

︸ ︷︷ ︸
Sonine

}



10. Proof (continued)

φ̃(s) := χ0(s)
{
φ(s)−sn/2

m∑
k=0

ak(1−s2)λk

︸ ︷︷ ︸
Sonine

}
,

φ̃(j)(s) ∼
∞∑

k=0
ck
dj

dsj
sµ+k +

∞∑
ℓ=0

Aℓ
dj

dsj
sn/2+2ℓ

︸ ︷︷ ︸
additional terms

(s→ +0)

The additional terms do not contribute to the Wong expansion,
because of the poles of the Gamma function.
SLOW DECREASE in any of the three cases

1. Contribution from the left end (power, Wong) is dominant.
2. That from the right (power × oscillation, Sonine) is dominant.
3. They are of the same order.



Happy birthday, Professor Wong!


