Local and global analyticity for a generalized Camassa-Holm system

> Hideshi YAMANE Kwansei Gakuin University

RIMS, October 10, 2024

1. (single) Camassa-Holm equation

Camassa-Holm equation $u_t - u_{txx} = -3uu_x + 2u_xu_{xx} + uu_{xxx}$ or

$$
u_t + uu_x + \partial_x (1 - \partial_x^2)^{-1} \left[u^2 + \frac{1}{2} u_x^2 \right] = 0 \text{ on } \mathbb{R},
$$

where

$$
(1 - \partial_x^2)^{-1} \varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (1 + \xi^2)^{-1} \hat{\varphi}(\xi) d\xi.
$$

Shallow water wave, bi-Hamiltonian structure, integrability, *...*

variations:

Periodic $(x \in S^1)$, μ (involves mean value on $S^1 \ni x)$, Khesin-Lenells-Misiolek. System

2. Global analytic solution (Barostichi-Himonas-Petronilho, JDE 2017)

Very roughly speaking, if the initial value is holomorphic in a strip ⊃ R in C and is square-integrable, then the solution to IVP (for a generalize CH) exists globally in time and is analytic.

Methods:

Introduce suitable function spaces

Local analytic solution: abstract Cauchy-Kowalevsky. Scales of Banach spaces.

Time-global *H^s* solution

Analyticity in *x* for any *t*: Method by Tosio Kato and Kyuya Masuda

Analyticity in (*t,x*): Komatsu or Kotake-Narashimhan (BHP quotes a book by Rodino.)

3. CH system of R. M. Chen-Y. Liu

Chen-Liu (IMRN 2011)

$$
\begin{cases}\n u_t - u_{txx} - \alpha u_x + 3uu_x - \beta(2u_xu_{xx} + uu_{xxx}) + \rho \rho_x = 0, \\
 \rho_t + (\rho u)_x = 0.\n\end{cases}
$$
\n(1)

Here it is assumed that $u \to 0$ and $\rho \to 1$ hold as $|x| \to \infty$. Set $v = \rho - 1 \rightarrow 0$. [\(1\)](#page-3-0) is equivalent to $\sqrt{ }$ J \mathcal{L} $u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta u}{2} \right]$ $\frac{-\beta}{2}u^2 + \frac{\beta}{2}$ $\frac{\beta}{2}u_x^2 + v + \frac{1}{2}$ $\left[\frac{1}{2}v^2\right]=0,$ $v_t + u_x + (uv)_x = 0.$ (2)

with $u \to 0$, $v \to 0$ as $|x| \to \infty$.

4. Formulation of IVPs

The CH system of Chen-Liu

$$
\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0. \end{cases}
$$

with $u \to 0$, $v \to 0$ involves the Ψ DO $(1-\partial_x^2)^{-1}$. So research must be GLOBAL in *x*.

It can be solved LOCALLY or GLOBALLY in *t*. Solutions in a suitable space of functions on R*x*.

5. Known result: time-global solvability in *H^s*

Theorem (Chen-Liu 2011)

 \mathcal{A} *ssume* $0 < \beta < 2$, $s > 3/2$. If $(u_0,v_0) \in H^s(\mathbb{R}) \times H^{s-1}(\mathbb{R})$ and inf_{*x*∈ℝ} $v_0(x)$ > −1, then the IVP for

$$
\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0 \end{cases}
$$

with $u(0,x) = u_0$, $v(0,x) = v_0$ has a unique solution (u,v) in $\mathcal{C}([0,\infty), H^s(\mathbb{R}) \times H^{s-1}(\mathbb{R})) \cap \mathcal{C}^1([0,\infty), H^{s-1}(\mathbb{R}) \times H^{s-2}(\mathbb{R}))$.

6. Main result: global analytic solution If the initial data are analytic, then the solution is analytic globally in both *t* and *x*. **(***µ***-case is by Y., 2020)** For $r > 0$, set $S(r) = \{x + iy \in \mathbb{C}; |y| < r\}$ and $A(r) = \{f : \mathbb{R} \to \mathbb{R}; f(z) \text{ can be analytically continued to } S(r)\}\$

 $\cap\left\{f\in L_{x,y}^{2}(S(r'))\right.$ for all $0 < r' < r\right\}.$

Theorem (**Global analyticity [Funk. Ekvac. 2023]**)

Assume $0 < \beta < 2$ and $\inf_{x \in \mathbb{R}} v_0(x) > -1$. *If* u_0, v_0 ∈ $A(r_0)$ for some $r_0 > 0$, then the solution (u, v) is analytic in t, x . It belongs to $\bigoplus^2 \mathcal{C}^\omega([0,\infty)_t \times \mathbb{R}_x).$

7. time-local and global analyticity

IVP for the CH system with analytic initial value (with some technical assumptions).

 \Rightarrow Unique existence of a global-in-time analytic solution

Ref: (generalized) CH, Barostichi-Himonas-Petronilho 2017

WHAT REMAINS TO BE PROVED (solvability in H^s is known):

1. local analyticity in *t*

← Cauchy-Kowalevsky (Ovsyannikov) type argument

2. analyticity in $x(t) > 0$ fixed)

 \leftarrow Kato-Masuda theory. The most difficult part.

3. global analyticity in *t*

8. *A*(*r*) (Fréchet) and *Eδ,s* (Banach)

Following BHP (with some generalization and a modified notation), we introduce

$$
||f||_{(\delta,s)} = \sup_{k \ge 0} \frac{\delta^k (k+1)^2 ||f^{(k)}||_s}{k!} \ (0 < \delta \le 1, s \ge 2).
$$

and the Banach space *Eδ,s* by

$$
E_{\delta,s} = \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}); \|f\|_{(\delta,s)} < \infty \right\}.
$$

 $E_{\delta,s}$ is closed under multiplication. $E_{\delta,s}$ is continuously embedded in $A(\delta)$. Conversely, if $\delta < r/e$ then $A(r)$ is continuously embedded in $E_{\delta,s}$.

9. Continuity of operations on *Eδ,s*

If $0 < \delta \leq 1$, $s \geq 2$, then

$$
||uv||_{(\delta,s)} \le \text{const.} ||u||_{(\delta,s)} ||v||_{(\delta,s)}.
$$

If $0 < \delta' < \delta \leq 1$, we have

$$
\|\partial_x u\|_{(\delta',s)} \leq \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)},
$$

$$
\|\partial_x u\|_{(\delta,s)} \leq \|u\|_{(\delta,s+1)},
$$

$$
\|(1 - \partial_x^2)^{-1} \partial_x^p u\|_{(\delta,s)} \leq \|u\|_{(\delta,s)} \ (p = 0, 1, 2),
$$

$$
\|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s)} \leq \frac{\|u\|_{(\delta,s)}}{\delta - \delta'},
$$

$$
\|(1 - \partial_x^2)^{-1} u\|_{(\delta,s+2)} = \|u\|_{(\delta,s)} \ (p = 0, 1, 2),
$$

$$
\|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s+1)} \leq \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)}.
$$

10. time-local analytic IVP for CH system

Theorem

Let $0 < \Delta \le 1$, $s \ge 2$. If $(u_0, v_0) \in \bigoplus^2 E_{\Delta, s+1}$, then there exists *T*[∆] *>* 0 such that the IVP the CH system has a unique holomorphic solution valued in $\oplus^2 E_{\Delta d,s+1}$ in the disk *D*(0*,T* \wedge (1−*d*)) for every *d* ∈[0*,1*]. (*t* is near 0)

Method: abstract Cauchy-Kowalevsky. Scales of Banach spaces. (Ovsyannikov, Yamanaka, Trèves)

Ref: CH and similar equations, Barostichi-Himonas-Petronilho 2016

We used $\|\cdot\|_{(\delta,s)}$ to prove local analyticity in t (small).

11. New norm ∥ • ∥*σ,*²

Next, we want to show analyticity in x (for fixed $t \in \mathbb{R}$). Following Kato-Masuda (1986), set

$$
||f||_{\sigma,2}^{2} = \sum_{j=0}^{\infty} \frac{e^{2j\sigma}}{j!^{2}} ||f^{(j)}||_{2}^{2}.
$$

$$
\quad \Longleftrightarrow \quad \text{Do not confuse } \|\bullet\|_{\sigma,2} \text{ with } \|\bullet\|_{(\delta,s)}.
$$

∥ • ∥*σ,*² is useful in the study of analytic functions: If $f \in A(r)$, then $||f||_{\sigma,2} < \infty$. (Here $\sigma < \log r$) If $||f||_{\sigma,2} < \infty$ for any $\sigma < \log r$, then $f \in A(r)$. We employ $\|\bullet\|_{\sigma,2}$ to prove analyticity in x for an arbitrarily large (fixed) *t*.

12. Regularity theorem by Kato and Masuda: outline

Consider the equation

 $\frac{dU}{dt} = F(U), U(0) = U_0.$

Here *F* is typically a (nonlinear) continuous mapping from a Banach space to another.

Kato-Masuda theorem gives some sufficient condition for the regularity of $U(t)$, $t > 0$.

If U_0 is regular to some extent, then so is $U(t)$, $t > 0$.

Let $\{\Phi_{\sigma}; -\infty < \sigma < \infty\}$ be a family of functions related to norms on Banach spaces. (Liapunov family).

Φ*^σ* is a measure of regularity. $\Phi_{\sigma}(U(t))$ can be estimated in terms of U_0 .

13. Regularity theorem by Kato-Masuda: formulation

X, *Z*: Banach spaces and *Z* is a dense subspace of *X*. *F* : continuous mapping from *Z* to *X*. ${\Phi_{\sigma}}$; $-\infty < \sigma < \infty$ }: a family of real-valued functions on *Z*. Assume

 $|\langle F(U), D\Phi_s(U) \rangle| \le K\Phi_s(U) + L\Phi_s(U)^{1/2} \partial_s \Phi_s(U) + M \partial_s \Phi_s(U).$

D: Frechét derivative $\langle \cdot, \cdot \rangle$ (no subscript) : the pairing of X and $\mathcal{L}(X;\mathbb{R})$. If $dU/dt = F(U)$, $U(0) = U_0$, then for functions $s(t)$, $r(t)$ depending on U_0 we have

 $\Phi_{s(t)}(U(t)) \leq r(t), t \in [0,T].$

If U_0 is regular to some extent, then so is $U(t)$, $t > 0$.

14. Liapunov family: the case of the CH system The system is asymmetric in $(u, v) \Rightarrow$ asymmetric Liapunov family Set $X = \bigoplus 2H^{m+2}$, $Z = \bigoplus 2H^{m+4}$,

$$
\Phi_{\sigma,m}(u,v) = \Phi_{\sigma,m}^{(1)}(u) + \Phi_{\sigma,m}^{(2)}(v),
$$

\n
$$
\Phi_{\sigma,m}^{(1)}(u) = \frac{1}{2} \sum_{j=1}^{m+1} \frac{1}{j!^2} e^{2(j-1)\sigma} \frac{||u^{(j)}||_2^2}{2},
$$

\n
$$
\Phi_{\sigma,m}^{(2)}(v) = \frac{1}{2} \sum_{j=0}^{m} \frac{1}{j!^2} e^{2j\sigma} \frac{||v^{(j)}||_2^2}{2}.
$$

\n
$$
||u||_{\sigma,2}^2 = ||u||_2^2 + 2 \lim_{m \to \infty} e^{2\sigma} \Phi_{\sigma,m}^{(1)}(u),
$$

\n
$$
||v||_{\sigma,2}^2 = \lim_{m \to \infty} 2\Phi_{\sigma,m}^{(2)}(v)
$$

Then [∥]*u*[∥]

and if they are finite, *u* and *v* are analytic in *x*. We want to get bounds on $\Phi_{\sigma,m}(u,v)$ by using KM theory.

15. Rewriting the system

$$
F(u, v) = (F_1(u, v), F_2(u, v)),
$$

\n
$$
F_1(u, v) = -\beta u u_x - (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right],
$$

\n
$$
F_2(u, v) = -u_x - (uv)_x.
$$

Our CH system is

$$
\frac{d(u,v)}{dt} = F(u,v)
$$

and this is how the Kato-Masuda theory is applied.

16. Kato-Masuda and the CH system

 F is a continuous mapping from $\oplus^2 H^{m+4}$ to $\oplus^2 H^{m+2}$. There exist positive constants $K_1, K_2, L_1, L_2, M_1, M_2, M_3$ independent of u, v and σ such that we have

$$
\langle F(u, v), D\Phi_{\sigma,m}(u, v) \rangle |
$$

\n
$$
\leq [K_1 + K_2 ||(u, v)||_3] \Phi_{\sigma,m}(u, v)
$$

\n
$$
+ (L_1 + L_2 e^{\sigma}) \Phi_{\sigma,m}(u, v)^{1/2} \partial_{\sigma} \Phi_{\sigma,m}(u, v)
$$

\n
$$
+ [M_1 + (M_2 + M_3 e^{2\sigma}) ||(u, v)||_3] \partial_{\sigma} \Phi_{\sigma,m}(u, v)
$$

for $(u, v) \in \bigoplus^2 H^{m+4}$. Kato-Masuda theory works for $d(u, v)/dt = F(u, v)$ [CH system]. \Rightarrow Bounds on $\Phi_{\sigma,m}(u(t),v(t))$ and regularity of $(u(t),v(t))$. $m \to \infty$ and $u(t)$ and $v(t)$ are analytic in x for any $t > 0$.

17. Estimating
$$
\langle F(u, v), D\Phi_{\sigma,m}(u, v) \rangle
$$

\n $\langle F(u, v), D\Phi_{\sigma,m}(u, v) \rangle$
\n $= \sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j F_1(u, v) \rangle_2 + \sum_{j=0}^m \frac{e^{2j\sigma}}{j!^2} \langle v^{(j)}, \partial_x^j F_2(u, v) \rangle_2,$

The bracket on the left-hand side is the pairing of $\bigoplus^2 H^{m+2}$ and its dual $(\oplus^2 H^{m+2})^* \simeq \oplus^2 H^{m+2}.$ $\langle \cdot, \cdot \rangle_2$ is the inner product of H^2 . Estimates by using

∥*fg*∥² ≤ 8(∥*f*∥2∥*g*∥¹ +∥*f*∥1∥*g*∥2) (Kato-Ponce).

 H^2,H^1 norms in RHS. Better than $\|fg\|_2$ \le $\mathrm{const.} \|f\|_2 \|g\|_2.$

18. Estimating
$$
\sum_{j=1}^{m+1} j!^{-2} e^{2(j-1)\sigma} \langle u^{(j)}, \partial_x^j (uu_x) \rangle_2
$$

\n
$$
\sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j F_1 \rangle_2 \text{ involves}
$$
\n
$$
Q_j = \sum_{\ell=1}^j \binom{j}{\ell} \langle u^{(j)}, u^{(\ell)} u^{(j-\ell+1)} \rangle_2. \text{ (degree3)}
$$

Apply Schwarz and get $\|u^{(j)}\|_2 \|u^{(\ell)} u^{(j - \ell + 1)}\|_2.$ By Kato-Ponce, $||u^{(\ell)}u^{(j-\ell+1)}||_2 \leq 8(|u^{(\ell)}||_2||u^{(j-\ell+1)}||_1 + ||u^{(\ell)}||_1||u^{(j-\ell+1)}||_2)$ $\leq 8(||u^{(\ell)}||_2||u^{(j-\ell)}||_2 + ||u^{(\ell-1)}||_2||u^{(j-\ell+1)}||_2).$

$$
\begin{aligned}\n&\left|\sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j (uu_x) \rangle_2\right| \\
&\leq 96||u||_3 \Phi_{\sigma,m}(u,v) + \left(16||u||_3 + \frac{32\pi}{\sqrt{3}} e^{\sigma} \sqrt{\Phi_{\sigma,m}(u,v)}\right) \partial_{\sigma} \Phi_{\sigma,m}(u,v).\n\end{aligned}
$$

19. Final part of the proof of the main result

1. analyticity in *t* and *x*, local in *t*

← Cauchy-Kowalevsky (Ovsyannikov) type argument

- 2. analyticity in x (arbitrarily large fixed $t > 0$) ← Kato-Masuda, just completed
- 3. global analyticity in $t \leftarrow$ combination of 1 and 2

4. analyticity of $\mathbb{R}_t \to A(r)$ (function space in *x*, infininite dim.) \Rightarrow analyticity of $\mathbb{R}^2_{t,x}\to\mathbb{R}$

 $t \mapsto u(t, \cdot)$ is analytic.

$$
\left\|\partial_x^k\partial_t^ju\right\|_{L^2(\mathbb{R}\times[-T,T])}\leq \sqrt{T}C^{j+k+1}(j+k)!.
$$

 u is analytic in (t, x) by Komatsu (1960) or Kotake-Narashimhan (1961).

Prof. Honda and Prof. Okada, congratulations on your 60th birthdays!

Osaka Umeda Seminar on Functional Equations and Special Functions Kwansei Gakuin University, Umeda Campus, Oct 12 (Sat.) Speakers: Nobukawa, Tsuchimi, Nakamura, Yamane