Local and global analyticity for a generalized Camassa-Holm system

Hideshi YAMANE Kwansei Gakuin University

RIMS, October 10, 2024

1. (single) Camassa-Holm equation

Camassa-Holm equation $u_t - u_{txx} = -3uu_x + 2u_xu_{xx} + uu_{xxx}$ or

$$u_t + uu_x + \partial_x (1 - \partial_x^2)^{-1} \left[u^2 + \frac{1}{2} u_x^2 \right] = 0 \text{ on } \mathbb{R},$$

where

$$(1 - \partial_x^2)^{-1} \varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (1 + \xi^2)^{-1} \hat{\varphi}(\xi) \, d\xi.$$

Shallow water wave, bi-Hamiltonian structure, integrability, ...

variations:

Periodic $(x \in S^1)$,

 μ (involves mean value on $S^1 \ni x$), Khesin-Lenells-Misiolek. System

2. Global analytic solution (Barostichi-Himonas-Petronilho, JDE 2017)

Very roughly speaking, if the initial value is holomorphic in a strip $\supset \mathbb{R}$ in \mathbb{C} and is square-integrable, then the solution to IVP (for a generalize CH) exists globally in time and is analytic.

Methods:

Introduce suitable function spaces

Local analytic solution: abstract Cauchy-Kowalevsky. Scales of Banach spaces.

Time-global H^s solution

Analyticity in x for any t: Method by Tosio Kato and Kyuya Masuda

Analyticity in (t,x): Komatsu or Kotake-Narashimhan (BHP quotes a book by Rodino.)

3. CH system of R. M. Chen-Y. Liu

Chen-Liu (IMRN 2011)

$$\begin{cases} u_t - u_{txx} - \alpha u_x + 3uu_x - \beta(2u_x u_{xx} + uu_{xxx}) + \rho \rho_x = 0, \\ \rho_t + (\rho u)_x = 0. \end{cases}$$
 (1)

Here it is assumed that $u \to 0$ and $\rho \to 1$ hold as $|x| \to \infty$.

Set
$$v = \rho - 1 \rightarrow 0$$
.

(1) is equivalent to
$$\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0. \end{cases}$$
 (2)

with $u \to 0$, $v \to 0$ as $|x| \to \infty$.

4. Formulation of IVPs

The CH system of Chen-Liu

$$\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0. \end{cases}$$

with $u \to 0$, $v \to 0$ involves the $\Psi DO (1 - \partial_x^2)^{-1}$. So research must be GLOBAL in x.

It can be solved LOCALLY or GLOBALLY in t. Solutions in a suitable space of functions on \mathbb{R}_x .

5. Known result: time-global solvability in H^s

Theorem (Chen-Liu 2011)

Assume $0<\beta<2$, s>3/2. If $(u_0,v_0)\in H^s(\mathbb{R})\times H^{s-1}(\mathbb{R})$ and $\inf_{x\in\mathbb{R}}v_0(x)>-1$, then the IVP for

$$\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0 \end{cases}$$

with $u(0,x)=u_0$, $v(0,x)=v_0$ has a unique solution (u,v) in $\mathcal{C}([0,\infty),H^s(\mathbb{R})\times H^{s-1}(\mathbb{R}))\cap \mathcal{C}^1([0,\infty),H^{s-1}(\mathbb{R})\times H^{s-2}(\mathbb{R})).$

6. Main result: global analytic solution

If the initial data are analytic, then the solution is analytic globally in both t and x. (μ -case is by Y., 2020)

For r > 0, set $S(r) = \{x + iy \in \mathbb{C}; \, |y| < r\}$ and

$$A(r) = \{ f \colon \mathbb{R} \to \mathbb{R}; \, f(z) \text{ can be analytically continued to } S(r) \}$$

$$\cap \left\{ f \in L^2_{x,y}(S(r')) \text{ for all } 0 < r' < r \right\}.$$

Theorem (Global analyticity [Funk. Ekvac. 2023])

Assume $0 < \beta < 2$ and $\inf_{x \in \mathbb{R}} v_0(x) > -1$. If $u_0, v_0 \in A(r_0)$ for some $r_0 > 0$, then the solution (u, v) is analytic in t, x. It belongs to $\bigoplus^2 \mathcal{C}^{\omega}([0, \infty)_t \times \mathbb{R}_x)$.

7. time-local and global analyticity

IVP for the CH system with analytic initial value (with some technical assumptions).

⇒ Unique existence of a global-in-time analytic solution

Ref: (generalized) CH, Barostichi-Himonas-Petronilho 2017

WHAT REMAINS TO BE PROVED (solvability in H^s is known):

- 1. local analyticity in t
 - $\leftarrow \mathsf{Cauchy}\text{-}\mathsf{Kowalevsky}\;(\mathsf{Ovsyannikov})\;\mathsf{type}\;\mathsf{argument}$
- 2. analyticity in x (t > 0 fixed)
 - \leftarrow Kato-Masuda theory. The most difficult part.
- 3. global analyticity in t

8. A(r) (Fréchet) and $E_{\delta,s}$ (Banach)

Following BHP (with some generalization and a modified notation), we introduce

$$||f||_{(\delta,s)} = \sup_{k \ge 0} \frac{\delta^k (k+1)^2 ||f^{(k)}||_s}{k!} \ (0 < \delta \le 1, s \ge 2).$$

and the Banach space $E_{\delta,s}$ by

$$E_{\delta,s} = \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}); \|f\|_{(\delta,s)} < \infty \right\}.$$

 $E_{\delta,s}$ is closed under multiplication.

 $E_{\delta,s}$ is continuously embedded in $A(\delta)$.

Conversely, if $\delta < r/e$ then A(r) is continuously embedded in $E_{\delta,s}$.

9. Continuity of operations on $E_{\delta,s}$

If $0 < \delta \le 1$, $s \ge 2$, then

$$||uv||_{(\delta,s)} \le \text{const.} ||u||_{(\delta,s)} ||v||_{(\delta,s)}.$$

If $0 < \delta' < \delta \le 1$, we have

$$\|\partial_x u\|_{(\delta',s)} \le \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)},$$

$$\|\partial_x u\|_{(\delta,s)} \le \|u\|_{(\delta,s+1)},$$

$$\|(1 - \partial_x^2)^{-1} \partial_x^p u\|_{(\delta,s)} \le \|u\|_{(\delta,s)} \ (p = 0, 1, 2),$$

$$\|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s)} \le \frac{\|u\|_{(\delta,s)}}{\delta - \delta'},$$

$$\|(1 - \partial_x^2)^{-1} u\|_{(\delta,s+2)} = \|u\|_{(\delta,s)} \ (p = 0, 1, 2),$$

$$\|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s+1)} \le \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)}.$$

10. time-local analytic IVP for CH system

Theorem

Let $0<\Delta\leq 1, s\geq 2$. If $(u_0,v_0)\in \oplus^2 E_{\Delta,s+1}$, then there exists $T_\Delta>0$ such that the IVP the CH system has a unique holomorphic solution valued in $\oplus^2 E_{\Delta d,s+1}$ in the disk $D(0,T_\Delta(1-d))$ for every $d\in]0,1[$. (t is near 0)

Method: abstract Cauchy-Kowalevsky. Scales of Banach spaces. (Ovsyannikov, Yamanaka, Trèves)

Ref: CH and similar equations, Barostichi-Himonas-Petronilho 2016

We used $\|\cdot\|_{(\delta,s)}$ to prove local analyticity in t (small).

11. New norm $\| \bullet \|_{\sigma,2}$

Next, we want to show analyticity in x (for fixed $t \in \mathbb{R}$). Following Kato-Masuda (1986), set

$$||f||_{\sigma,2}^2 = \sum_{j=0}^{\infty} \frac{e^{2j\sigma}}{j!^2} ||f^{(j)}||_2^2.$$

Do not confuse $\| ullet \|_{\sigma,2}$ with $\| ullet \|_{(\delta,s)}.$

 $\| \bullet \|_{\sigma,2}$ is useful in the study of analytic functions:

If $f \in A(r)$, then $||f||_{\sigma,2} < \infty$. (Here $\sigma < \log r$)

If $||f||_{\sigma,2} < \infty$ for any $\sigma < \log r$, then $f \in A(r)$.

We employ $\| \bullet \|_{\sigma,2}$ to prove analyticity in x for an arbitrarily large (fixed) t.

12. Regularity theorem by Kato and Masuda: outline

Consider the equation

$$\frac{dU}{dt} = F(U), \ U(0) = U_0.$$

Here F is typically a (nonlinear) continuous mapping from a Banach space to another.

Kato-Masuda theorem gives some sufficient condition for the regularity of $U(t),\,t>0.$

If U_0 is regular to some extent, then so is U(t), t > 0.

Let $\{\Phi_{\sigma}; -\infty < \sigma < \infty\}$ be a family of functions related to norms on Banach spaces. (Liapunov family).

 Φ_{σ} is a measure of regularity. $\Phi_{\sigma}(U(t))$ can be estimated in terms of U_0 .

13. Regularity theorem by Kato-Masuda: formulation

X, Z: Banach spaces and Z is a dense subspace of X.

F: continuous mapping from Z to X.

 $\{\Phi_\sigma; -\infty < \sigma < \infty\}$: a family of real-valued functions on Z. Assume

 $|\langle F(U), D\Phi_s(U)\rangle| \le K\Phi_s(U) + L\Phi_s(U)^{1/2}\partial_s\Phi_s(U) + M\partial_s\Phi_s(U).$

D: Frechét derivative

 $\langle\cdot,\cdot\rangle$ (no subscript) : the pairing of X and $\mathcal{L}(X;\mathbb{R})$.

If dU/dt = F(U), $U(0) = U_0$, then for functions s(t), r(t) depending on U_0 we have

$$\Phi_{s(t)}(U(t)) \le r(t), t \in [0, T].$$

If U_0 is regular to some extent, then so is U(t), t > 0.

14. Liapunov family: the case of the CH system

The system is asymmetric in (u,v) \Rightarrow asymmetric Liapunov family Set $X=\oplus^2 H^{m+2},\quad Z=\oplus^2 H^{m+4},$

$$\begin{split} &\Phi_{\sigma,m}(u,v) = \Phi_{\sigma,m}^{(1)}(u) + \Phi_{\sigma,m}^{(2)}(v), \\ &\Phi_{\sigma,m}^{(1)}(u) = \frac{1}{2} \sum_{j=1}^{m+1} \frac{1}{j!^2} e^{2(j-1)\sigma} \frac{\|u^{(j)}\|_2^2}{2}, \\ &\Phi_{\sigma,m}^{(2)}(v) = \frac{1}{2} \sum_{j=0}^{m} \frac{1}{j!^2} e^{2j\sigma} \frac{\|v^{(j)}\|_2^2}{2}. \\ &\|u\|_{\sigma,2}^2 = \|u\|_2^2 + 2 \lim_{m \to \infty} e^{2\sigma} \Phi_{\sigma,m}^{(1)}(u), \\ &\|v\|_{\sigma,2}^2 = \lim_{m \to \infty} 2\Phi_{\sigma,m}^{(2)}(v) \end{split}$$

and if they are finite, u and v are analytic in x. We want to get bounds on $\Phi_{\sigma,m}(u,v)$ by using KM theory.

Then

15. Rewriting the system

$$F(u,v) = (F_1(u,v), F_2(u,v)),$$

$$F_1(u,v) = -\beta u u_x - (1-\partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3-\beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right],$$

$$F_2(u,v) = -u_x - (uv)_x.$$

Our CH system is

$$\frac{d(u,v)}{dt} = F(u,v)$$

and this is how the Kato-Masuda theory is applied.

16. Kato-Masuda and the CH system

F is a continuous mapping from $\oplus^2 H^{m+4}$ to $\oplus^2 H^{m+2}$. There exist positive constants $K_1,K_2,L_1,L_2,M_1,M_2,M_3$ independent of u,v and σ such that we have

$$\begin{aligned} |\langle F(u,v), D\Phi_{\sigma,m}(u,v)\rangle| \\ &\leq [K_1 + K_2 \| (u,v) \|_3] \Phi_{\sigma,m}(u,v) \\ &+ (L_1 + L_2 e^{\sigma}) \Phi_{\sigma,m}(u,v)^{1/2} \partial_{\sigma} \Phi_{\sigma,m}(u,v) \\ &+ \left[M_1 + (M_2 + M_3 e^{2\sigma}) \| (u,v) \|_3 \right] \partial_{\sigma} \Phi_{\sigma,m}(u,v) \end{aligned}$$

for $(u,v) \in \oplus^2 H^{m+4}$. Kato-Masuda theory works for d(u,v)/dt = F(u,v) [CH system]. \Rightarrow Bounds on $\Phi_{\sigma,m}(u(t),v(t))$ and regularity of (u(t),v(t)). $m \to \infty$ and u(t) and v(t) are analytic in x for any t>0.

17. Estimating $\langle F(u,v), D\Phi_{\sigma,m}(u,v) \rangle$

$$\begin{split} &\langle F(u,v), D\Phi_{\sigma,m}(u,v)\rangle\\ &=\sum_{j=1}^{m+1}\frac{e^{2(j-1)\sigma}}{j!^2}\langle u^{(j)},\partial_x^jF_1(u,v)\rangle_2 + \sum_{j=0}^{m}\frac{e^{2j\sigma}}{j!^2}\langle v^{(j)},\partial_x^jF_2(u,v)\rangle_2, \end{split}$$

The bracket on the left-hand side is the pairing of $\oplus^2 H^{m+2}$ and its dual $(\oplus^2 H^{m+2})^* \simeq \oplus^2 H^{m+2}$.

 $\langle \cdot, \cdot \rangle_2$ is the inner product of H^2 .

Estimates by using

$$||fg||_2 \le 8(||f||_2||g||_1 + ||f||_1||g||_2)$$
 (Kato-Ponce).

 H^2, H^1 norms in RHS. Better than $||fg||_2 \leq \text{const.} ||f||_2 ||g||_2$.

18. Estimating $\sum_{j=1}^{m+1} j!^{-2} e^{2(j-1)\sigma} \langle u^{(j)}, \partial_x^j (uu_x) \rangle_2$

$$\begin{split} \sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j F_1 \rangle_2 \text{ involves} \\ Q_j = \sum_{\ell=1}^j \binom{j}{\ell} \langle u^{(j)}, u^{(\ell)} u^{(j-\ell+1)} \rangle_2. \quad \text{(degree3)} \end{split}$$

$$\begin{split} \text{Apply Schwarz and get} \ \|u^{(j)}\|_2 \|u^{(\ell)}u^{(j-\ell+1)}\|_2. \ \text{By Kato-Ponce,} \\ \|u^{(\ell)}u^{(j-\ell+1)}\|_2 &\leq 8 \left(\|u^{(\ell)}\|_2 \|u^{(j-\ell+1)}\|_1 + \|u^{(\ell)}\|_1 \|u^{(j-\ell+1)}\|_2\right) \\ &\leq 8 \left(\|u^{(\ell)}\|_2 \|u^{(j-\ell)}\|_2 + \|u^{(\ell-1)}\|_2 \|u^{(j-\ell+1)}\|_2\right). \end{split}$$

$$\begin{split} & \left| \sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j (uu_x) \rangle_2 \right| \\ & \leq 96 \|u\|_3 \Phi_{\sigma,m}(u,v) + \left(16 \|u\|_3 + \frac{32\pi}{\sqrt{3}} e^{\sigma} \sqrt{\Phi_{\sigma,m}(u,v)} \right) \partial_{\sigma} \Phi_{\sigma,m}(u,v). \end{split}$$

19. Final part of the proof of the main result

- 1. analyticity in t and x, local in t \leftarrow Cauchy-Kowalevsky (Ovsyannikov) type argument
- 2. analyticity in x (arbitrarily large fixed t > 0) \leftarrow Kato-Masuda, just completed
- 3. global analyticity in $t \leftarrow$ combination of 1 and 2

4. analyticity of $\mathbb{R}_t \to A(r)$ (function space in x, infininite dim.) \Rightarrow analyticity of $\mathbb{R}^2_{t,r} \to \mathbb{R}$

 $t\mapsto u(t,\cdot)$ is analytic.

$$\left\| \partial_x^k \partial_t^j u \right\|_{L^2(\mathbb{R} \times [-T,T])} \leq \sqrt{T} C^{j+k+1} (j+k)!.$$

u is analytic in (t,x) by Komatsu (1960) or Kotake-Narashimhan (1961).

Prof. Honda and Prof. Okada, congratulations on your 60th birthdays!

Osaka Umeda Seminar on Functional Equations and Special Functions Kwansei Gakuin University, Umeda Campus, Oct 12 (Sat.)

Speakers: Nobukawa, Tsuchimi, Nakamura, Yamane