Asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation

Hideshi YAMANE (山根英司)
Kwansei Gakuin University (关西学院大学), Japan

ICIAM, Beijing
MSTuE42; Nonlinear waves in systems with dissipation and gain
August 11, 2015
1. Riemann-Hilbert problem (RHP)

BOUNDARY VALUE PROBLEM IN THE COMPLEX PLANE

\[\Gamma: \text{ oriented contour (the left-hand is the + side).} \]
\[m(z): \text{ unknown matrix, holomorphic in } \mathbb{C} \setminus \Gamma \]

\textbf{Examples:}
1. \(\Gamma = \mathbb{R} \), \(m(z) \) holo. in \(\pm \text{Im} \, z > 0 \).
2. \(\Gamma = \{ |z| = 1 \} \), \(m(z) \): holo. in \(|z| \neq 1 \).
1. Riemann-Hilbert problem (RHP)

BOUNDARY VALUE PROBLEM IN THE COMPLEX PLANE

Γ: oriented contour (the left-hand is the + side).

$m(z)$: unknown matrix, holomorphic in $\mathbb{C} \setminus \Gamma$

Examples: 1. $\Gamma = \mathbb{R}$, $m(z)$ holo. in $\pm \text{Im } z > 0$.
2. $\Gamma = \{|z| = 1\}$, $m(z)$: holo. in $|z| \neq 1$.

m_+, m_-: boundary values on Γ from the ± sides

$\textbf{RHP: } m_+ = m_- v$ on Γ (v: the jump matrix)

We often neglect to mention the normalization condition

$m(z) \to I$ as $z \to \infty$.
2. RHPs behave like integrals

RHP: $m_+ = m_- v$ on Γ
2. RHPs behave like integrals

RHP: \(m_+ = m_- v \) on \(\Gamma \)

- **contour deformation**
 - New contour, unknown, jump matrix.
 - The original RHP \(\iff \) new RHP.

- **continuity**
 - The mapping \(v \mapsto m \) is continuous.

- **deletion of a part of the contour**
 1. If \(v = I \) on \(\hat{\Gamma} \subset \Gamma \) (no jump there),
 \[
 m[\text{original}] = m[\text{with } \hat{\Gamma} \text{ deleted}]
 \]
 2. If \(v \approx I \) on \(\hat{\Gamma} \), \(m[\text{original}] \approx m[\text{with } \hat{\Gamma} \text{ deleted}] \)
3. Nonlinear steepest descent (Deift-Zhou ’93)

An RHP $m_+ = m_- v$ behaves like an integral. An analogue of the method of steepest descent is possible. Deform Γ if necessary and we assume:

$v = v_j$ on $\Gamma_j \subset \{ \text{Im } (-1)^{j-1} \psi > 0 \}$ ($j = 1, 2$),

v_1 involves $\exp(it\psi) \to 0$, v_2 involves $\exp(-it\psi) \to 0$

$v_j \to I$ on $\Gamma_j \setminus \{ \text{saddle point} \}$.

$m(z)$ is almost determined by $v(z)$ (z near the saddle point).
4. Inverse scattering for NLS and RHP

\[iu_t + u_{xx} - 2|u|^2u = 0 \cdots \text{(NLS)} \]

\(r(z, t) \): reflection coefficient

\[v_1(z) := \begin{bmatrix} 1 - |r(z, 0)|^2 & -e^{-2it\psi_1}r(z, 0) \\ e^{2it\psi_1}r(z, 0) & 1 \end{bmatrix}, \quad \psi_1 := 2z^2 + \frac{xz}{t} \]

\[m_+(z) = m_-(z)v_1(z) \quad \text{on } \mathbb{R}, \]

\[m(z) \to I \text{ as } z \to \infty \]

Reconstruction formula \(\leftarrow \text{INVERSE PROBLEM!} \)

\[u(x, t) = 2i \lim_{z \to \infty} z m(z; x, t)_{12} \text{ (Ablowitz-Clarkson)} \]
4. Inverse scattering for NLS and RHP

\[iu_t + u_{xx} - 2|u|^2u = 0 \cdots \text{(NLS)} \]

\(r(z,t) \): reflection coefficient

\[
v_1(z) := \begin{bmatrix} 1 - |r(z,0)|^2 & -e^{-2it\psi_1}r(z,0) \\ e^{2it\psi_1}r(z,0) & 1 \end{bmatrix}, \quad \psi_1 := 2z^2 + \frac{xz}{t}
\]

\[
m_+(z) = m_-(z)v_1(z) \quad \text{on } \mathbb{R},
\]

\[
m(z) \to I (z \to \infty)
\]

Reconstruction formula \(\leftarrow \text{INVERSE PROBLEM!} \)

\[
u(x,t) = 2i \lim_{z \to \infty} z m(z; x, t)_{12} \quad \text{(Ablowitz-Clarkson)}
\]

\[
u(x,0) \leftrightarrow r(z) = r(z,0) \leftrightarrow r(z, t) \leftrightarrow m \leftrightarrow u(x, t)
\]
5. Asymptotics of NLS

1. Zakhalov-Manakov '76: formal calculation
2. Deift-Its-Zhou '93: proof by nonlinear steepest descent

RHP involving \(\exp(it\psi_1) \)

\[
\psi_1 = 2tz^2 + xz/t; \quad z_0 = -x/(4t)
\]

is the only saddle point

\[
u(x, t) \sim \alpha(z_0)t^{-1/2} \exp(4itz_0^2 - iv(z_0)\log 8t)
\]
6. Integrable Discrete NLS (IDNLS)

Ablowitz-Ladik ('75) introduced

\[i \frac{d}{dt} R_n + (R_{n+1} - 2R_n + R_{n-1}) - |R_n|^2 (R_{n+1} + R_{n-1}) = 0 \] (IDNLS)

cf. nonlinear optical waveguides, melting chrystal, ...

\(R_n \) is asymptotically (Y. 2014, 2015)

1. \(|n|/t < 2\)
 Sum of two terms, each being \(t^{-1/2} \times \) (oscillatory factor)

2. \(|n|/t \approx 2\)
 \(t^{-1/3} \times \) (oscillatory factor)
 coefficient written in terms of a sol. of the Painlevé II.
 \[u'' - su(s) - 2u^3(s) = 0 \]

3. \(|n|/t > 2\)
 \(O(n^{-j}) \) as \(n \to \infty \)

cf. formal calculation by Novokshënov about the focusing, solitonless case
7. Asymptotics: three regions

sum of two terms each being
\(t^{-1/2} \times \text{oscil. factor} \)
(Zakharov-Manakov type)

3 regions: \(|n|/t < 2, \approx 2, > 2\)

- Timelike
- Lightcone
- Spacelike \(O(n^{-j}) (\forall j) \)
8. IDNLS and its Lax pair

\[i \frac{d}{dt} R_n + (R_{n+1} - 2R_n + R_{n-1}) - |R_n|^2 (R_{n+1} + R_{n-1}) = 0 \] (IDNLS)

\[X_{n+1} = \begin{bmatrix} z & \bar{R}_n \\ R_n & z^{-1} \end{bmatrix} X_n \]

\[\frac{d}{dt} X_n = \begin{bmatrix} \text{a complicated matrix} \end{bmatrix} X_n \]

(IDNLS) is the compatibility condition.
9. Reflection coefficient

\[X_{n+1} = \begin{bmatrix} z & R_n \\ R_n & z^{-1} \end{bmatrix} X_n \]

\(\Psi_n \): holo. sol. in \(|z| > 1\), continuous in \(|z| \geq 1\),

\(\Psi^*_n \): holo. sol. in \(|z| < 1\), continuous in \(|z| \leq 1\),

\[\Psi_n \sim z^{-n} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \Psi^*_n \sim z^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{as } n \to \infty. \]

The \textbf{reflection coefficient} \(r \) is defined by:

\[r \Psi_n + \Psi^*_n \sim \text{const.} z^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (n \to -\infty). \]

\[r(z, t) = r(z) \exp \left(it(z - z^{-1})^2 \right), \text{ where } r(z) = r(z, 0). \]
10. RHP

\[m_+(z) = m_-(z) v_2(z) \text{ on } |z| = 1, \]
\[m(z) \to I \text{ as } z \to \infty, \]
\[v_2(z) = \begin{bmatrix} 1 - |r(z)|^2 & -e^{-2it\psi_2} \bar{r}(z) \\ e^{2it\psi_2}r(z) & 1 \end{bmatrix} \text{ jump matrix} \]
\[\psi_2 = \frac{1}{2} (z - z^{-1})^2 + \frac{in}{t} \log z \]
10. RHP

\[m_+(z) = m_-(z)v_2(z) \text{ on } |z| = 1, \]

\[m(z) \to I \text{ as } z \to \infty, \]

\[v_2(z) = \begin{bmatrix} 1 - |r(z)|^2 & -e^{-2it\psi_2} \bar{r}(z) \\ e^{2it\psi_2}r(z) & 1 \end{bmatrix} \text{ jump matrix} \]

\[\psi_2 = \frac{1}{2}(z - z^{-1})^2 + \frac{in}{t} \log z \]

Reconstruction formula \(R_n(t) = -\frac{d}{dz}m(z)_{21} \bigg|_{z=0} \)

RHP gives \(\{R_n\} \).

\(\psi_2 \) has four saddle points. Their geometry (relative to \(|z| = 1 \)) determines the asymptotic behavior of \(R_n \).
Thank you very much!
太感谢了!