Let G be an abelian reductive algebraic group defined over a field of characteristic 0. Let V and \tilde{V} be G-representation spaces. We assume that \tilde{V} is a direct sum of one-dimensional G-representation spaces. We show that up to the G-equivalence, G-equivariant embeddings $V \to \tilde{V}$ bijectively correspond to the sequences $\Delta = (\delta_1, \ldots, \delta_m)$ having slice systems where $m = \dim V$ and δ_i's are semi-invariant, mutually commuting locally nilpotent derivations of some form on a polynomial ring B with a linear $(G \times G_m)$-action. For a sequence Δ as above, the intersection B^Δ of the kernels of δ_i for $1 \leq i \leq m$ inherits the $(G \times G_m)$-action on B. We show that B^Δ is a polynomial ring with semi-invariant coordinates if and only if the G-equivariant embedding associated to Δ is equivariantly rectifiable. Our results are the equivariant extension of [9].

1. Introduction and results

Let k be a field of characteristic 0, which is the ground field. Let G be an abelian reductive algebraic group. A G-representation space, abbreviated to a G-representation, is an affine space with a linear G-action as a G-variety. Let V and \tilde{V} be G-representations of dimension m and n, respectively. We assume that \tilde{V} is a direct sum of one-dimensional G-representations. Hence the coordinate ring of \tilde{V} is a polynomial ring with semi-invariant coordinates. Let $\varphi : V \hookrightarrow \tilde{V}$ be a G-equivariant embedding of G-varieties, which we abbreviate to a G-embedding. We may assume that φ maps the origin of V to the origin of \tilde{V}. Since φ induces a G-equivariant injective homomorphism of the tangent space at the origin of V into the tangent space at the origin of \tilde{V}. Since φ induces a G-equivariant injective homomorphism of the tangent space at the origin of V into the tangent space at the origin of \tilde{V}. Since φ induces a G-equivariant injective homomorphism of the tangent space at the origin of V into the tangent space at the origin of \tilde{V}.
\(\tilde{V} \), it follows that \(\tilde{V} = V \oplus V' \) for some \(G \)-representation \(V' \). Hence \(V \) is a direct sum of one-dimensional \(G \)-representations as well. For two \(G \)-embeddings \(\varphi \) and \(\varphi' \) of \(V \) into \(\tilde{V} \), \(\varphi' \) is called \(G \)-equivalent to \(\varphi \) if there is a \(G \)-equivariant automorphism \(\gamma \) of \(\tilde{V} \) such that \(\varphi' = \gamma \circ \varphi \). A \(G \)-embedding \(\varphi : V \to \tilde{V} \) is called \(G \)-rectifiable if there exists a system of semi-invariant coordinate functions \(f_1, \ldots, f_n \) on \(\tilde{V} \) such that the image \(\varphi(V) \) is defined by the \(G \)-stable ideal \((f_{m+1}, \ldots, f_n) \). If \(\varphi : V \to \tilde{V} \) is \(G \)-equivariant to the standard \(G \)-embedding \(V \hookrightarrow V \oplus V' = \tilde{V} \), then \(\varphi \) is \(G \)-rectifiable. Forgetting the \(G \)-action, a \(G \)-rectifiable embedding \(\tilde{V} \to V \) is a rectifiable embedding \(\mathbb{A}^n \to \mathbb{A}^n \). It is known by van den Essen and van Rossum [5] that there is a sequence of locally nilpotent derivations associated to a given embedding \(\mathbb{A}^m \to \mathbb{A}^n \). In fact, the sequences of locally nilpotent derivations of some form bijectively correspond to embeddings up to the equivalence ([9]). In this article, we show that the same holds true equivariantly.

We fix the notation and state our results. Let \(\Omega \) be the set of characters of \(G \). Let \(V = \text{Spec } k[v_1, \ldots, v_m] \) and let \(v_i \) \((1 \leq i \leq m) \) be a semi-invariant of weight \(\alpha_i \in \Omega \), i.e., \(g \cdot v_i = \alpha_i(g) v_i \) for all \(g \in G \). Let \(\beta_1, \ldots, \beta_u \in \Omega \) be the weights of a system of semi-invariant coordinate functions of \(\tilde{V} \). Let \(B \) be a polynomial ring \(k[u, v_1, \ldots, v_m, x_1, \ldots, x_n] \) with a linear \(G \)-action such that the weight of \(u, v_i \) \((1 \leq i \leq m) \), \(x_j \) \((1 \leq j \leq n) \) is 0, \(\alpha_i, \beta_j \), respectively. As a \(G \)-variety, \(Y = \text{Spec } B \) is isomorphic to \(L \oplus V \oplus \tilde{V} \) where \(L \) is the trivial \(G \)-representation of one dimension. We give \(B \) a \(\mathbb{Z} \)-grading by

\[
\deg u = -1, \quad \deg v_i = 0, \quad \deg x_j = d
\]

for \(1 \leq i \leq m \) and \(1 \leq j \leq n \) where \(d \) is a fixed positive integer. There is an algebraic action of an algebraic torus \(G_m \) on \(Y \) corresponding to this grading, which we call the \(T \)-action where \(T = G_m \). The \(T \)-action on \(Y \) commutes with the \(G \)-action. Note that the algebraic quotient \(Y//T = \text{Spec } B^T \) is \(G \)-equivariantly isomorphic to \(V \oplus \tilde{V} \) where \(B^T \) is the \(T \)-invariants of \(B \). It follows that \(B = \bigoplus_{(\chi, i) \in \Omega \oplus \mathbb{Z}} B_{\chi,i} \) where

\[
B_{\chi,i} = \{ b \in B \mid (g, t) \cdot b = t^i \chi(g) b \text{ for all } (g, t) \in G \times T \}.
\]

A derivation \(\delta \) on \(B = \bigoplus_{(\chi, i) \in \Omega \oplus \mathbb{Z}} B_{\chi,i} \) is called semi-invariant of weight \((\omega, \ell) \) if \(\delta(B_{\chi,i}) \subset B_{\chi+\omega,i+\ell} \) for every \((\chi, i) \). We consider a sequence \(\Delta = (\delta_1, \ldots, \delta_m) \) of semi-invariant, locally nilpotent derivations \(\delta_i \)'s on \(B \) satisfying \(\delta_i \delta_l = \delta_l \delta_i \) for any \(i \) and \(l \). For such two sequences \(\Delta_1 = (\delta_1^{(1)}, \ldots, \delta_m^{(1)}) \) and \(\Delta_2 = (\delta_1^{(2)}, \ldots, \delta_m^{(2)}) \), we say that \(\Delta_1 \) and \(\Delta_2 \) are \(G \)-equivalent if there is a \((G \times T) \)-equivariant \(k[v_1, \ldots, v_m] \)-automorphism \(\psi \) of \(B \) which satisfies \(\delta_i^{(2)} \circ \psi = \psi \circ \delta_i^{(1)} \) for every \(i \). We say that
the sequence $\Delta = (\delta_1, \ldots, \delta_m)$ of mutually commuting locally nilpotent derivations on B has a slice system (s_1, \ldots, s_m) if each δ_i has a slice $s_i \in B$, i.e., $\delta_i(s_i) = 1$, such that $\delta_i(s_l) = 0$ for $i \neq l$. When the G-action is trivial, it is shown in [9] that there is a bijective correspondence between the equivalence classes of embeddings $\mathbb{A}^m \to \mathbb{A}^n$ and the equivalence classes of sequences $\Delta = (\delta_1, \ldots, \delta_m)$ having slice systems where δ_i's are mutually commuting locally nilpotent derivations on B and semi-invariant of weight $-d$ of a form

$$\delta_i = u^d \partial_{v_i} + f_{i1} \partial_{x_1} + \cdots + f_{in} \partial_{x_n}$$

for $f_{ij} \in B^T$. For a sequence $\Delta = (\delta_1, \ldots, \delta_m)$ as above, let $B^\Delta = \cap_{i=1}^m B^{\delta_i}$ where B^{δ_i} denotes the kernel of δ_i. Then B^Δ inherits the T-action on B. It is known as well that B^Δ is a polynomial ring with semi-invariant coordinates with respect to the T-action if and only if the embedding $\varphi_\Delta : \mathbb{A}^m \to \mathbb{A}^n$ associated to Δ is rectifiable ([9]). Throughout this article, a sequence $\Delta = (\delta_1, \ldots, \delta_m)$ implies a sequence of mutually commuting locally nilpotent derivations δ_i's on B such that each δ_i is of the form (*) and semi-invariant of weight $(-\alpha_i, -d)$ for $1 \leq i \leq m$ unless otherwise stated. The next result follows from Proposition 4.3 and Lemma 4.6, which appear below.

Theorem 1.1. There is a bijective correspondence between the G-equivalence classes of G-embeddings $V \to \tilde{V}$ and the G-equivalence classes of sequences $\Delta = (\delta_1, \ldots, \delta_m)$ having slice systems.

The kernel B^Δ of a sequence Δ inherits the $(G \times T)$-action on B. We show the following (Theorem 5.1).

Theorem 1.2. Let $\Delta = (\delta_1, \ldots, \delta_m)$ be a sequence having a slice system. Then B^Δ is a polynomial ring with semi-invariant coordinates with respect to the $(G \times T)$-action if and only if the G-embedding $\varphi_\Delta : V \to \tilde{V}$ associated to Δ is G-rectifiable.

Suppose that a G-embedding $\varphi : V \to \tilde{V}$ is rectifiable, but not G-rectifiable. Then $X = \text{Spec } B^\Delta$ is isomorphic to a T-representation, hence the affine space of dimension $n + 1$, but not isomorphic to a $(G \times T)$-representation. Namely, the $(G \times T)$-action on $X \cong \mathbb{A}^{n+1}$ is non-linearizable.

We observe the G-rectifiability of G-embeddings in section 3. In section 5, we observe an example of non-rectifiable $\mathbb{Z}/2\mathbb{Z}$-embedding and discuss problems related to it. In general, it is not easy to determine whether the kernel B^Δ of a sequence Δ having a slice system is a polynomial ring or not. However, there are some cases that B^Δ is a polynomial ring with semi-invariant coordinates, i.e., $X = \text{Spec } B^\Delta$.
is isomorphic to a representation of G or $G \times T$. We give a couple of examples. Suppose that the ground field k is algebraically closed. The G-action on an affine variety Y is called fix-pointed if every closed orbit of Y is a fixed point. Suppose that the G-action on $\text{Spec } B$ is fix-pointed and $V^G = \{0\}$. Then B^Δ is a polynomial ring with semi-invariant coordinates with respect to the G-action (Proposition 5.4). Consider, next, the case where G is a complex algebraic torus and V and \tilde{V} are complex G-representations. Suppose that $\dim \tilde{V}/G \leq 1$. Then it follows from the results of Bass and Haboush [2] and Kraft and Schwarz [8] that B^Δ is a polynomial ring with semi-invariant coordinates with respect to the $(G \times T)$-action (Theorem 5.5). Hence by Theorems 1.1 and 1.2, it follows that every G-embedding $V \rightarrow \tilde{V}$ is G-rectifiable in this case.

Our results hold for a reductive group G not necessarily abelian under the assumption that \tilde{V} is a direct sum of one-dimensional G-representations unless otherwise G is specified.

Acknowledgements The author is grateful to the referee for making suggestions for improving the presentation.

2. Preliminaries

We collect some results on the kernel of a sequence of semi-invariant, mutually commuting locally nilpotent derivations on an affine domain with an action of an abelian reductive group.

Let G be an abelian reductive algebraic group and let B be an affine domain with an algebraic G-action. The subalgebra B^G of G-invariants is finitely generated over k. Let Ω be the set of characters of G. We assume that B has a decomposition $B = \bigoplus_{\chi \in \Omega} B_\chi$ where

$$B_\chi = \{ b \in B \mid g \cdot b = \chi(g)b \quad \text{for all } g \in G \}. $$

An element of B_χ is called semi-invariant of weight χ.

Suppose that δ is a locally nilpotent derivation on B which is semi-invariant of weight $-\omega$ and that δ has a slice $s \in B$. Then we may assume that s is semi-invariant of weight ω.

Let $\Delta = (\delta_1, \ldots, \delta_m)$ be a sequence of mutually commuting locally nilpotent derivations on $B = \bigoplus_{\chi \in \Omega} B_\chi$. Suppose that δ_i is semi-invariant of weight $-\omega_i$ for $1 \leq i \leq m$ and that Δ has a semi-invariant slice system (s_1, \ldots, s_m) such that s_i is of weight ω_i.

Lemma 2.1. (cf. [9, Lemma 2.1]) Under the notation and assumption above, we have the following.
(1) The slice s_i is transcendental over B^{δ_i} and $B = B^{\delta_i}[s_i]$. Hence

$$B = A[s_1, \ldots, s_m] \quad \text{for} \quad A = \bigcap_{i=1}^{m} B^{\delta_i}.$$

(2) Let $\pi_{s_i} : B \to B$ be the Dixmier map induced by δ_i and s_i, which is the algebra homomorphism defined by

$$\pi_{s_i}(b) = \sum_{j \geq 0} \frac{(-1)^j}{j!} \delta_i^j(b)s_i^j \quad \text{for} \quad b \in B.$$

Then

(i) $\pi_{s_i}(B_\chi) \subset B_\chi$ for every $\chi \in \Omega$.

(ii) $B^{\delta_i} = \pi_{s_i}(B)$.

(iii) The kernel of π_{s_i} is the G-stable ideal $(s_i) \subset B$.

Hence $A = \pi_s(B)$ where $\pi_s = \pi_{s_m} \circ \cdots \circ \pi_{s_1}$ and A inherits the G-action.

The sequence $\Delta = (\delta_1, \ldots, \delta_m)$ on B having a semi-invariant slice system induces a \mathbb{Z}^m-grading on B, hence an algebraic action of an m-dimensional torus $(G_m)^m$ on $Y := \text{Spec } B$. In fact, for $1 \leq i \leq m$, δ_i and its slice s_i induce a \mathbb{Z}-grading on B such that $\deg s_i = 1$ and $\deg a = 0$ for $a \in B^{\delta_i} = \{0\}$. There is an algebraic G_m-action on Y corresponding to the \mathbb{Z}-grading on B induced by δ_i and s_i. We call the action the T_i-action where $T_i = G_m$. The T_i-action on Y is given by the k-algebra homomorphism $\rho_i : B \to B[t, t^{-1}]$ defined by (cf. Freudenburg [6, 10.2])

$$\rho_i(b) = \sum_{j \geq 0} \frac{(t - 1)^j}{j!} \delta_i^j(b)s_i^j \quad \text{for} \quad b \in B.$$

The T_i-actions commute with each other and the m-dimensional torus $T' = T_1 \times \cdots \times T_m$ acts on Y. The subalgebra B^{T_i} is equal to $B^{\delta_i} \cong B/(s_i)$ and $B^{T'} = A$. Note that the G-action commutes with every T_i-action and $G \times T'$ acts on Y.

For the remainder of this section, we suppose that k is algebraically closed. Let $p : Y \to Y//G := \text{Spec } B^G$ be the algebraic quotient, which is defined by the inclusion $B^G \hookrightarrow B$. Then p induces an embedding of the fixed point locus Y^G into $Y//G$. The G-action on Y is called fix-pointed if $p|_{Y^G}$ is an isomorphism, i.e., every closed orbit of Y is a fixed point. It is known by Bass and Haboush [2] that $Y \cong Y^G \times V$ for a G-representation V if Y is smooth, the G-action on Y is fix-pointed, and every vector bundle over Y is trivial. Hence if $Y^G \cong Y//G$ is the affine space, then Y is isomorphic to the affine space and the G-action on Y is linearizable.
Lemma 2.2. Under the notation and assumption in Lemma 2.1, suppose that \(Y = \text{Spec} \, B \) is smooth and the \(G \)-action on \(Y \) is fix-pointed. Suppose, further, that every vector bundle over \(Y \) is trivial. Then \(A \) is a polynomial ring over \(A^G \) with semi-invariant coordinates. Hence if \(A^G \) is a polynomial ring, then \(A \) is a polynomial ring over \(k \) with semi-invariant coordinates, i.e., \(X = \text{Spec} \, A \) is isomorphic to a \(G \)-representation.

Proof. By Lemma 2.1, it follows that \(Y \cong X \times V \) for a \(G \)-representation \(V \). Hence \(X \) is a smooth \(G \)-subvariety of \(Y \). Note that the \(G \)-action on \(X \) is fix-pointed as well. Further, every vector bundle over \(X \) is trivial since every vector bundle over \(Y \) is trivial. Hence it follows from [2] that \(X \cong X//G \times V' \) for a \(G \)-representation \(V' \).

If the \(G \)-action on \(Y \) is fix-pointed, then the \(G \)-action on \(X_i = \text{Spec} \, A_i \) is fix-pointed as well where \(A_i = B^{(i)} \).

If \(G = G_m \), then \(B \) is \(\mathbb{Z} \)-graded and \(B = \oplus_{i \in \mathbb{Z}} B_i \). Suppose that \(B \) is positively graded, i.e., \(B_i = 0 \) for every \(i < 0 \). Then the \(G \)-action on \(Y \) is fix-pointed. Hence \(A \) is a polynomial ring with homogeneous coordinates if \(A^G \) is a polynomial ring.

Let \(B \) be an affine domain with a \(G \)-action and let \(R = B[x_1, \ldots, x_n] \) be a polynomial ring over \(B \) with an indeterminant \(x_j \) is semi-invariant of weight \(\beta_j \). We assume that the \(G \)-action on \(R \) restricts to the action on \(B \). Let \(\delta \) be a semi-invariant locally nilpotent \(B \)-derivation on \(R \) of weight \(-\beta_1 \) and let \(f_j = \delta(x_j) \in B \) for \(1 \leq j \leq n \). Then each \(f_j \) is semi-invariant of weight \(\beta_j - \beta_1 \). Suppose that \(\delta \) has a slice. Then the sequence \((f_1, \ldots, f_n) \) is a unimodular row. Hence the sequence \((f_1, \ldots, f_n) \) is considered as a surjective \(G \)-vector bundle map \(\Psi \) from the trivial \(G \)-bundle \(Y \times (L \oplus F) \) over \(Y = \text{Spec} \, B \) onto the trivial \(G \)-bundle \(Y \times L \) where \(L \) is the trivial \(G \)-representation of dimension one and \(F \) is a \(G \)-representation of weight \(\beta_2 - \beta_1, \ldots, \beta_n - \beta_1 \). In fact, \(\Psi \) is given by

\[
\Psi(y, c_1, \ldots, c_n) = (y, f_1(y)c_1 + \cdots + f_n(y)c_n)
\]

for \(y \in Y \) and \((c_1, \ldots, c_n) \in L \oplus F \). The \(G \)-action on \(B \) is given by \((g \cdot f)(y) = f(g^{-1}y) \) for \(g \in G, \ f \in B, \) and \(y \in Y \). Suppose, further, that any \(G \)-vector bundle over \(Y \) is trivial. Then the \(G \)-vector bundle obtained by the kernel of \(\Psi \) can be trivialized. Hence there exists a \(G \)-vector bundle automorphism of \(Y \times (L \oplus F) \), which is represented by an invertible matrix \(C \) of entries in semi-invariants of \(B \) such that \((f_1, \ldots, f_n) = (1, 0, \ldots, 0)C \).

Lemma 2.3. (cf. [9, Lemma 2.2]) Let \(\delta \) be a semi-invariant locally nilpotent \(B \)-derivation on \(R = B[x_1, \ldots, x_n] \) of weight \(-\beta_1 \) having a
slice and let $\delta(x_j) \in B$ for every j. Suppose that any G-vector bundle over Y is trivial. Then R^δ is a polynomial ring over B. Furthermore, there exists a system of coordinates ξ_2, \ldots, ξ_n of R^δ over B such that each ξ_i is semi-invariant of weight β_i and linear in x_1, \ldots, x_n over B.

Proof. Let $f_j = \delta(x_j)$ for $1 \leq j \leq n$. Then there is an invertible matrix C of entries in semi-invariants of B such that $(f_1, \ldots, f_n) = (1,0,\ldots,0)C$. Let $D = (d_{ij})_{1 \leq i,j \leq n}$ be the inverse of C. Then $d_{ij} \in B$ is semi-invariant of weight $\beta_j - \beta_i$ since C represents a G-vector bundle automorphism of $Y \times (L \oplus F)$. Let

$$s = d_{11}x_1 + d_{21}x_2 + \cdots + d_{n1}x_n$$

$$\xi_i = d_{i1}x_1 + d_{i2}x_2 + \cdots + d_{ni}x_n \quad \text{for} \quad 2 \leq i \leq n.$$

Then $R = B[s, \xi_2, \ldots, \xi_n]$ and s is of weight β_1 and ξ_i of weight β_i. Since $(f_1, \ldots, f_n)D = (1,0,\ldots,0)$, it follows that s is a slice of δ and $\delta(\xi_i) = 0$ for $2 \leq i \leq n$. Hence $R^\delta = B[\xi_2, \ldots, \xi_n]$ and the assertion follows.

The following is easily verified.

Lemma 2.4. (cf. [9, Lemma 2.3]) Let δ be a semi-invariant locally nilpotent B-derivation on $R = B[x_1, \ldots, x_n]$. Suppose that $\delta(x_1)$ belongs to the group B^* of invertible elements of B. Then $R^\delta = B[x_2, \ldots, x_n]$. Hence R^δ is a polynomial ring over B with semi-invariant coordinates.

3. Equivariant Embeddings

In this section, we observe G-embeddings and associate a sequence to a given G-embedding.

Let V and \tilde{V} be G-representations and let $\varphi : V \to \tilde{V}$ be a G-embedding. Let $S = k[v_1, \ldots, v_m]$ and $R = k[x_1, \ldots, x_n]$ be the coordinate rings of V and \tilde{V} respectively, where v_i ($1 \leq i \leq m$) is semi-invariant of weight α_i and X_j ($1 \leq j \leq n$) of weight β_j. As observed in section 1, it follows that $\tilde{V} = V \oplus V'$ for a G-representation V'. Hence we may and assume $\beta_i = \alpha_i$ for $1 \leq i \leq m$.

Proposition 3.1. Suppose that there exists a subgroup G' of G such that $\tilde{V}^{G'} = V$. Then $\varphi : V \to \tilde{V}$ is G-rectifiable.

Proof. Note that $V^{G'} = V$ since $V = \tilde{V}^{G'}$ is G'-invariant. Hence the G-embedding φ induces an embedding $V^{G'} \to \tilde{V}^{G'}$, which is an isomorphism. Thus φ is G-rectifiable. \qed
Let $\Phi : R \to S$ be the G-equivariant surjection associated with the G-embedding $\varphi : V \to \bar{V}$. Since Φ is G-equivariant, Φ induces a surjection $\Phi_\chi : R_\chi \to S_\chi$ for every character χ of G.

Proposition 3.2.

(1) Suppose that for $1 \leq i \leq m$, α_i is non-trivial and the R^G-module R_{α_i} is generated by one element. Then φ is G-rectifiable.

(2) Suppose that $S_{\beta_j} = 0$ for $m+1 \leq j \leq n$. Then φ is G-rectifiable.

Proof.

(1) It suffices to show that $\Phi(X_i) = c_i v_i$ for $1 \leq i \leq m$ where $c_i \in k^*$. In fact, if $\Phi(X_i) = c_i v_i$ with $c_i \in k^*$ for $1 \leq i \leq m$, then we have a system of semi-invariant coordinates $X_1, \ldots, X_m, X'_m, \ldots, X'_n$ of R satisfying $\Phi(X'_i) = 0$ for $1 \leq j \leq n - m$ where $X'_j = X_j - f_j X_1 - \cdots - f_m X_m$ for $f_j = \Phi(X_j)$. It follows from the assumption that for $1 \leq i \leq m$, R_{α_i} is generated by X_i over R^G since X_i is irreducible. Since $\Phi_{\alpha_i} : R_{\alpha_i} \to S_{\alpha_i}$ is surjective, there exists $f_i \in R^G$ such that $\Phi_{\alpha_i}(f_i X_i) = \Phi_{\alpha_i}(f_i) \Phi_{\alpha_i}(X_i) = v_i$. It follows that $\Phi(f_i) \in S^* = k^*$ since v_i is irreducible and semi-invariant of non-trivial weight. Hence $\Phi(X_i) = c_i v_i$ for $c_i \in k^*$.

(2) Since $\Phi_{\beta_j} : R_{\beta_j} \to S_{\beta_j}$ is trivial, $\Phi(X_j) = 0$ for $m + 1 \leq j \leq n$. Hence the assertion follows.

We show that every G-embedding $V \to \bar{V}$ is G-rectifiable when composed by a suitable G-embedding $V \to V \oplus \bar{V}$.

Proposition 3.3. There exists a G-embedding $\psi : \bar{V} \to V \oplus \bar{V}$ such that $\tilde{\varphi} = \psi \circ \varphi$ is G-rectifiable.

Proof.

Since $\Phi : R \to S$ is a G-equivariant surjection, there exists an $H_i \in R$ of weight α_i such that $\Phi(H_i) = v_i$ for $1 \leq i \leq m$. Let I be the kernel of Φ. Then I is G-stable and $R = k[H_1, \ldots, H_m] \oplus I$ as a G-module. Hence each X_j is written as $X_j = \xi_j + \eta_j$ where $\xi_j \in k[H_1, \ldots, H_m]$ and $\eta_j \in I$ are of weight β_j. Thus the semi-invariant $m + n$ elements H_1, \ldots, H_{m+n} generate R over k, where $H_{m+j} := \eta_j$ for $1 \leq j \leq n$. Note that $I = (H_{m+1}, \ldots, H_{m+n})$. Let $\bar{R} = k[\bar{X}_1, \ldots, \bar{X}_{m+n}]$ be a polynomial ring with a linear G-action such that the weight of \bar{X}_j is α_j for $1 \leq j \leq m$ and β_{j-m} for $m+1 \leq j \leq m + n$. Then $\text{Spec} \ \bar{R}$ is isomorphic to the G-representation $V \oplus \bar{V}$. Let $\Psi : \bar{R} \to R$ be the G-equivariant surjection defined by $\Psi(\bar{X}_j) = H_j$ for $1 \leq j \leq m + n$. Then Ψ defines a G-embedding $\psi : \bar{V} \to V \oplus \bar{V}$ and the kernel of the G-equivariant surjection $\bar{\Phi} := \Phi \circ \Psi$ is the G-stable ideal generated by $\bar{X}_{m+1}, \ldots, \bar{X}_{m+n}$. Hence the G-embedding $\tilde{\varphi} = \psi \circ \varphi : V \to V \oplus \bar{V}$ is G-rectifiable and the assertion follows.
We shall associate a sequence Δ_φ to the G-embedding $\varphi : V \to \tilde{V}$. Let B be a polynomial ring $k[u, v_1, \ldots, v_m, x_1, \ldots, x_n]$ with a linear $(G \times T)$-action where $T = G_m$ as stated in section 1. The weight of u, v_i ($1 \leq i \leq m$), x_j ($1 \leq j \leq n$) is $(0, -1)$, $(\alpha_i, 0)$, (β_j, d), respectively, where d is a positive integer. Let f_j be the image of X_j by $\Phi : R \to S$ for $1 \leq j \leq n$. We define a derivation δ_i on B by

$$\delta_i = u^d \partial_v + (\partial_v f_1) \partial_{x_1} + \cdots + (\partial_v f_n) \partial_{x_n}$$

for $1 \leq i \leq m$. Then δ_i is a semi-invariant locally nilpotent derivation of weight $(-\alpha_i, -d)$ and $\delta_i \delta_l = \delta_l \delta_i$ for any i and l. Let $\Delta_\varphi = (\delta_1, \ldots, \delta_m)$.

Proposition 3.4. ([9, Proposition 3.2]) The sequence $\Delta_\varphi = (\delta_1, \ldots, \delta_m)$ has a semi-invariant slice system (s_1, \ldots, s_m).

Proof. We show that each δ_i has a slice s_i of weight (α_i, d) such that $\delta_i(s_i) = 0$ for $i \neq l$. Since Φ is a surjection, there exists a polynomial $F_i \in k[X_1, \ldots, X_n]$ such that

$$F_i(f_1, \ldots, f_n) = v_i$$

for $1 \leq i \leq m$. Let $s_i \in B$ be an element satisfying

$$F_i(f_1 - u^d x_1, \ldots, f_n - u^d x_n) = v_i - u^d s_i.$$

Since $\delta_i(f_j - u^d x_j) = 0$ for $1 \leq l \leq m$ and $1 \leq j \leq n$, it follows that $\delta_i(v_i - u^d s_i) = 0$, i.e., $\delta_i(s_i) = 1$ and $\delta_i(s_i) = 0$ for $i \neq l$. We can take s_i to be semi-invariant of weight (α_i, d), and the assertion follows. \qed

We call Δ_φ the sequence associated to a G-embedding φ.

4. Sequences and G-embeddings

In this section, we show that there is a bijective correspondence between the G-equivalence classes of G-embeddings and the G-equivalence classes of sequences having slice systems.

Let

$$B = k[u, v_1, \ldots, v_m, x_1, \ldots, x_n]$$

where the weight of u, v_i, x_j is $(0, -1)$, $(\alpha_i, 0)$, (β_j, d), respectively, as in the previous section. We assume that $\beta_i = \alpha_i$ for $1 \leq i \leq m$. Note that

$$B^T = k[v_1, \ldots, v_m, u^d x_1, \ldots, u^d x_n].$$

Let $Y = \text{Spec } B$. As a $(G \times T)$-representation,

$$Y = L \oplus V_0 \oplus V_{-d} \oplus V'_{-d}.$$

Here $L = \text{Spec } k[u]$, $V_0 = \text{Spec } S$, $V_{-d} = \text{Spec } k[x_1, \ldots, x_m]$, and $V'_{-d} = \text{Spec } k[x_{m+1}, \ldots, x_n]$ where $S = k[v_1, \ldots, v_m]$. As a G-representation,
$V_0 = V = V_d$. We shall observe the kernel of a sequence. Let $\Delta = (\delta_1, \ldots, \delta_m)$ be a sequence, i.e., a sequence of mutually commuting locally nilpotent derivations on B of a form

$$\delta_i = u^d\partial v_i + f_{i1}\partial x_1 + \cdots + f_{in}\partial x_n$$

(1)

where $f_{ij} \in B$ is semi-invariant of weight $(\beta_j - \alpha_i, 0)$ for $1 \leq j \leq n$. Each δ_i is semi-invariant of weight $(-\alpha_i, -d)$. Let

$$A = \bigcap_{i=1}^m B^{\delta_i}.$$

The sequence $\Delta = (\delta_1, \ldots, \delta_m)$ uniquely extends to a sequence of mutually commuting semi-invariant locally nilpotent derivations on the localization B_u at u. Note that the $(G \times T)$-action on B extends to the action on B_u. The kernel $(B_u)^{\delta_i}$ is the localization of B^{δ_i} at u, and $\cap_{i=1}^m (B_u)^{\delta_i} = A_u$. The sequence $\Delta = (\delta_1, \ldots, \delta_m)$ of the derivations on B_u has a semi-invariant slice system $(v_1/u^d, \ldots, v_m/u^d)$. Hence it follows from Lemma 2.1 that $B_u = A_u[v_1, \ldots, v_m]$ and

$$A_u = k[u, u^{-1}, \phi(x_1), \ldots, \phi(x_n)]$$

where $\phi = \phi_1 \circ \cdots \circ \phi_1$ and ϕ_i is the Dixmier map defined by

$$\phi_i(b) = b + \sum_{l \geq 1} \frac{(-1)^l}{l!} \delta_i^l(b) \left(\frac{v_i}{u^d} \right)^l \quad \text{for} \quad b \in B_u.$$

Note that each ϕ_i preserves the weight since δ_i is semi-invariant of weight $(-\alpha_i, -d)$ and v_i/u^d is of weight (α_i, d). The following is easily proved (cf. [9]).

Lemma 4.1. (1) For $1 \leq j \leq n$, $u^d\phi(x_j)$ is uniquely written as

$$u^d\phi(x_j) = u^d\theta_j + h_j$$

where $\theta_j \in B$ is an element of weight (β_j, d) satisfying $u^d\theta_j \in B^T \cap u^dB$ and $h_j \in S$ is of weight $(\beta_j, 0)$.

(2)

$$A^T = k[u^d\phi(x_1), \ldots, u^d\phi(x_n)]$$

$$= k[u^d\theta_1 + h_1, \ldots, u^d\theta_n + h_n].$$

Hence A^T is a polynomial ring in semi-invariant n variables.

Note that $\text{Spec } A^T$ is G-equivariantly isomorphic to $\tilde{V} = \text{Spec } R$. Let $\tilde{B} = B/(u) \cong k[v_1, \ldots, v_m, x_1, \ldots, x_n]$. Then \tilde{B} inherits the $(G \times T)$-action and the surjection $q : B \to \tilde{B}$ preserves the weight. The derivation δ_i induces a semi-invariant locally nilpotent derivation
\tilde{d}_i on \tilde{B}. Let $\tilde{A} = \cap_{i=1}^m \tilde{B}^{\tilde{d}_i}$. Since $q \circ \tilde{d}_i = \tilde{d}_i \circ q$ for every i, q induces an algebra homomorphism $q_0 : A \to \tilde{A}$ which preserves the weight.

Lemma 4.2. ([9, Lemma 3.1]) The following are equivalent.

1. The sequence Δ has a slice system.
2. The sequence Δ has a semi-invariant slice system (s_1, \ldots, s_m) such that s_i is of weight (α_i, d).
3. The homomorphism $q_0 : A \to \tilde{A}$ is surjective.

In the following, a semi-invariant slice system (s_1, \ldots, s_m) of Δ implies that (s_1, \ldots, s_m) is a slice system of Δ such that s_i is semi-invariant of weight (α_i, d) for $1 \leq i \leq m$. Suppose that $\Delta = (\delta_1, \ldots, \delta_m)$ has a semi-invariant slice system (s_1, \ldots, s_m). Then $v_i - u^d s_i \in A^T$ for every i. By Lemma 4.1 (2), there exists a polynomial $F_i \in k[X_1, \ldots, X_n]$ for $1 \leq i \leq m$ such that

$$v_i - u^d s_i = F_i(u^d \theta_1 + h_1, \ldots, u^d \theta_n + h_n).$$

Substituting $u = 0$ to the above equation, we obtain

$$v_i = F_i(h_1, \ldots, h_n). \quad (2)$$

We consider $R = k[X_1, \ldots, X_n]$ as a polynomial ring with a linear $(G \times T)$-action such that X_j is of weight $(\beta_j, 0)$ for $1 \leq j \leq n$. As a G-representation, Spec $R = \tilde{V}$. We define a G-equivariant algebra homomorphism $\Phi_\Delta : R \to S$ by

$$\Phi_\Delta(X_j) = h_j \quad \text{for } 1 \leq j \leq n.$$

Since Φ_Δ is a surjection by (2), it defines a G-embedding $\varphi_\Delta : V \to \tilde{V}$. In particular, we have $n \geq m$. We call φ_Δ (resp. Φ_Δ) the G-embedding (resp. G-equivariant surjection) associated to Δ.

Proposition 4.3. Let $\varphi : V \to \tilde{V}$ be a G-embedding and let $\Delta_\varphi = (\delta_1, \ldots, \delta_m)$ be the sequence associated to φ. Then the G-embedding φ_Δ associated to Δ_φ is G-equivalent to φ.

Proof. Let $\Phi : R \to S$ be the G-equivariant surjection associated with φ. Recall that δ_i of Δ_φ is defined by

$$\delta_i = u^d \partial_{v_i} + (\partial_{v_i} f_1) \partial_{x_1} + \cdots + (\partial_{v_i} f_n) \partial_{x_n}$$

where $f_j = \Phi(X_j)$ for $1 \leq j \leq n$. The associated surjection $\Phi_{\Delta_\varphi} : R \to S$ is defined by $\Phi_{\Delta_\varphi}(X_j) = h_j$ where $h_j \in S$ is a polynomial satisfying $u^d \phi(x_j) = u^d \theta_i + h_j$ for $u^d \theta_i \in B^T$. It is shown in [9, Proposition 3.2] that $h_j = -f_j + c_j$ for some $c_j \in k$. Since both of the weight of h_j and of f_j are equal to $(\beta_j, 0)$, it follows that $c_j = 0$ if β_j is non-trivial.
Hence by a G-equivariant affine automorphism γ of R, it follows that $\Phi_{\Delta, \varphi} = \Phi \circ \gamma$, i.e., $\varphi_{\Delta, \varphi}$ is G-equivalent to φ. \hfill \square

Suppose that $\Delta = (\delta_1, \ldots, \delta_m)$ has a slice system. Then the associated G-embedding φ_{Δ}, equivalently, the G-equivariant surjection $\Phi_{\Delta} : R \to S$ can be defined. Since Φ_{Δ} is a surjection, there exists an $H_i \in R$ of weight α_i such that $\Phi_{\Delta}(H_i) = v_i$ for $1 \leq i \leq m$. Let I be the kernel of Φ_{Δ}. Then I is G-stable and $R = k[H_1, \ldots, H_m] \oplus I$ as a G-module. There is a set of semi-invariant generators H_{m+1}, \ldots, H_{m+n} of I such that H_1, \ldots, H_{m+n} generate R over k (cf. the proof of Proposition 3.3). We can choose appropriate generators among H_{m+1}, \ldots, H_{m+n} and change their subscripts if necessary so that $I = (H_{m+1}, \ldots, H_r)$ and $H_1, \ldots, H_m, H_{m+1}, \ldots, H_r$ generate R. Note that $r \geq n$. The weight of H_i is γ_i where $\gamma_i = \alpha_i$ if $1 \leq i \leq m$ and $\gamma_i = \beta_j$ for some j if $m + 1 \leq i \leq r$. We have

$$\Phi_{\Delta}(H_i) = H_i[h_1, \ldots, h_n] = \begin{cases} v_i & \text{for } 1 \leq i \leq m \\ 0 & \text{for } m + 1 \leq i \leq r. \end{cases}$$

Note that if φ_{Δ} is G-rectifiable, then we can take $r = n$ and H_1, \ldots, H_n is a system of semi-invariant coordinates of R.

Let

$$\sigma : R \to A^T = k[u^d\theta_1 + h_1, \ldots, u^d\theta_n + h_n]$$

be the G-equivariant isomorphism defined by $X_i \mapsto u^d\theta_i + h_i$. We define w_i ($1 \leq i \leq m$) and y_j ($m + 1 \leq j \leq r$) by

$$\sigma(H_i) = H_i(u^d\theta_1 + h_1, \ldots, u^d\theta_n + h_n) = \begin{cases} v_i - u^d w_i & \text{for } 1 \leq i \leq m \\ u^d y_i & \text{for } m + 1 \leq i \leq r. \end{cases}$$

Since $\sigma(H_i) \in A^T$, it follows that for every l

$$\delta_l(v_i - u^d w_i) = \delta_l(u^d y_j) = 0.$$

Hence (w_1, \ldots, w_m) is a semi-invariant slice system of Δ, and y_j ($m + 1 \leq j \leq r$) is an element of A of weight (γ_j, d). Since H_1, \ldots, H_r generate R, it follows from $A^T = \sigma(R)$ that

$$A^T = k[\tilde{v}_1, \ldots, \tilde{v}_m, u^d y_{m+1}, \ldots, u^d y_r]$$

where $\tilde{v}_i := v_i - u^d w_i$ for $1 \leq i \leq m$.

Lemma 4.4. (cf. [9, Lemmas 3.3 and 3.5]) Suppose that $\Delta = (\delta_1, \ldots, \delta_m)$ has a slice system.

(1) $A = k[u, \tilde{v}_1, \ldots, \tilde{v}_m, y_{m+1}, \ldots, y_r]$.
As a consequence, if the associated G-embedding φ_Δ is G-rectifiable, then A is a polynomial ring with semi-invariant coordinates with respect to the $(G \times T)$-action.

(2) \[A = k[u, u^d \theta_1 + h_1, \ldots, u^d \theta_n + h_n, u^{-d} I(u^d \theta + h)] \]
where $I(u^d \theta + h) = \sigma(I)$ is the ideal of A^T.

(3) There is a $k[u]$-algebra isomorphism
\[\tilde{\sigma} : R[u, u^{-d} I] \xrightarrow{\sim} A \]
which is $(G \times T)$-equivariant and restricts to the isomorphism $\sigma : R \xrightarrow{\sim} A^T$. Here, we consider $R[u, u^{-1} I]$ as the $(G \times T)$-subalgebra of $R[u, u^{-1}]$.

When the G-action on Y is trivial, we obtain by Lemma 4.4 that the kernel of a sequence Δ with a slice system is a polynomial ring with semi-invariant coordinates with respect to the T-action if the associated embedding φ_Δ is rectifiable. Forgetting the G-action, it is well-known that $\varphi_\Delta : V \to \tilde{V}$ is rectifiable in the cases (1) $m = 1$ and $n = 2$, (2) $m = n$, (3) $n \geq 2m + 2$. Hence in these three cases, A is a polynomial ring and u is a coordinate variable of A. In the case (1), it follows that $A = k[u, \tilde{v}, y]$ where \tilde{v} (resp. y) is of degree 0 (resp. d) with respect to the T-action.

Corollary 4.5. Suppose that $k = \mathbb{C}$ and $G = \mathbb{C}^*$. If $m = 1$ and $n = 2$, and a semi-invariant locally nilpotent derivation δ on $B = \mathbb{C}[u,v,x_1,x_2]$ of a form (1) has a slice, then A is a polynomial ring with semi-invariant coordinates with respect to the $(G \times T)$-action.

Proof. Let $X = \text{Spec } A$. It follows from Lemma 4.1 (2) that $X/\!/T = \text{Spec } A^T \cong \mathbb{A}^2$. Hence $\dim X/\!\!/ (G \times T) \leq 2$. If $\dim X/\!\!/ (G \times T) = 2$, then the G-action on $X \cong \mathbb{A}^3$ is trivial, and we are done. If $X/\!\!/ (G \times T)$ is one-dimensional, the $(G \times T)$-action on X is linearizable by [8]. If $X/\!\!/ (G \times T)$ is a point, then the $(G \times T)$-action on X is linearizable by [2].

We show that there is a bijective correspondence between the G-equivalence classes of G-embeddings and the G-equivalence classes of sequences with slice systems.

Lemma 4.6. (cf. [9, Lemma 3.6]) Let $\Delta_1 = (\delta_1^{(1)}, \ldots, \delta_m^{(1)})$ and $\Delta_2 = (\delta_1^{(2)}, \ldots, \delta_m^{(2)})$ be two sequences having slice systems. Let φ_1 and φ_2 be the G-embeddings associated to Δ_1 and Δ_2, respectively. Then φ_1 and φ_2 are G-equivalent if and only if Δ_1 and Δ_2 are G-equivalent.
Proof. Suppose that Δ_1 and Δ_2 are G-equivalent. Then there is a $(G \times T)$-equivariant S-automorphism ψ of B such that $\delta_i^{(2)} \circ \psi = \psi \circ \sigma_i^{(1)}$ for every i. Let $A_{(1)} = \cap_{i=1}^m B_{i}^{(1)}$ and $A_{(2)} = \cap_{i=1}^m B_{i}^{(2)}$. Then ψ induces a G-equivariant isomorphism $\psi|_{A_{(1)}} : A_{(1)}^T \xrightarrow{\sim} A_{(2)}^T$. Let $u^d\theta_j^{(1)} + h_j^{(1)} (1 \leq j \leq n)$ be the element of $A_{(1)}^T$ defined as in Lemma 4.1 (1) with respect to Δ_i for $l = 1, 2$. Then the G-equivariant isomorphism $\sigma_l : R \xrightarrow{\sim} A_{(1)}^T$ is defined by $\sigma_l(x_j) = u^d\theta_j^{(1)} + h_j^{(1)}$ for $1 \leq j \leq n$. The isomorphism $\psi|_{A_{(1)}}$ induces a G-equivariant automorphism $\gamma : R \to R$ such that $\gamma \circ \sigma_l^{-1} = \sigma_2^{-1} \circ \psi|_{A_{(2)}^T}$. Let $\Phi_l : R \to S$ be the G-equivariant surjection associated to Δ_i. Then noting that $\psi(u) = cu$ for $c \in k^*$, one obtains that for every j,

$$(\Phi_2 \circ \gamma \circ \sigma_l^{-1})(u^d\theta_j^{(1)} + h_j^{(1)}) = h_j^{(1)} = (\Phi_1 \circ \sigma_l^{-1})(u^d\theta_j^{(1)} + h_j^{(1)})$$

(cf. the proof of [9, Lemma 3.6]). Hence it follows that $\Phi_1 = \Phi_2 \circ \gamma$, and φ_1 and φ_2 are G-equivalent.

Conversely, suppose that φ_1 and φ_2 are G-equivalent, i.e., $\Phi_1 = \Phi_2 \circ \gamma$ for a G-equivariant automorphism γ of R. Then it follows that $I_2 = \gamma(I_1)$ where $I_1 \subset R$ is the kernel of Φ_1. Hence γ extends to a $k[u]$-isomorphism $\tilde{\gamma} : R[u, u^{-d}I_1] \xrightarrow{\sim} R[u, u^{-d}I_2]$ which is $(G \times T)$-equivariant. By Lemma 4.4 (3), $\tilde{\gamma}$ induces a $k[u]$-isomorphism $\psi : A_{(1)} \xrightarrow{\sim} A_{(2)}$ which is $(G \times T)$-equivariant and satisfies $\sigma_2 \circ \gamma = \psi \circ \sigma_1$. Let $H_i (1 \leq i \leq m)$ be the element of R of weight α_i such that $\Phi_1(H_i) = v_i$, and let $w_i^{(1)} \in B (1 \leq i \leq m)$ be an element of degree (α_i, d) defined by $v_i - u^d w_i^{(1)} = \sigma_1(H_i)$. Then since $(w_1^{(1)}, \ldots, w_m^{(1)})$ is the semi-invariant slice system of Δ_1, it follows that $B = A_{(1)}[w_1^{(1)}, \ldots, w_m^{(1)}]$. We extend the $(G \times T)$-equivariant $k[u]$-isomorphism $\psi : A_{(1)} \to A_{(2)}$ to a $(G \times T)$-equivariant algebra homomorphism $\psi : B \to B$ by defining $\psi(w_i^{(1)})$ for $1 \leq i \leq m$ by

$$u^d \psi(w_i^{(1)}) = v_i - (\psi \circ \sigma_1)(H_i).$$

Note that $v_i - (\psi \circ \sigma_1)(H_i) \in u^d B$. In fact, since

$$(\psi \circ \sigma_1)(H_i) = (\sigma_2 \circ \gamma)(H_i) = (\gamma(H_i))(u^d\theta_1^{(2)} + h_1^{(2)}, \ldots, u^d\theta_n^{(2)} + h_n^{(2)})$$

and

$$(\gamma(H_i))(h_1^{(2)}, \ldots, h_n^{(2)}) = \Phi_2(\gamma(H_i)) = \Phi_1(H_i) = v_i,$$

it follows that $v_i - (\psi \circ \sigma_1)(H_i) \in u^d B$ and $\psi(w_i^{(1)}) \in B$ is defined. Let $w_i^{(2)} = \psi(w_i^{(1)})$ for $1 \leq i \leq m$. Then by the definition of $\psi(w_i^{(1)})$, it is easily checked that $(w_1^{(2)}, \ldots, w_m^{(2)})$ is a semi-invariant slice system of
Δ₂. Hence \(B = A_{(2)}[w^{(2)}_1, \ldots, w^{(2)}_m] \). It follows that \(\psi \) is a \((G \times T)\)-equivariant automorphism of \(B \) which satisfies \(\delta^{(2)}_i \circ \psi = \psi \circ \delta^{(1)}_i \) for every \(i \). Furthermore, \(\psi \) is a \(S \)-automorphism of \(B \) since it follows from \(v_i = u^d w^{(1)}_i + \sigma_1(H_i) \) for \(1 \leq i \leq m \) that
\[
\psi(v_i) = u^d \psi(w^{(1)}_i) + (\psi \circ \sigma_1)(H_i) = v_i - (\psi \circ \sigma_1)(H_i) + (\psi \circ \sigma_1)(H_i) = v_i.
\]

By Proposition 4.3 and Lemma 4.6, there is a bijective correspondence between the \(G \)-equivalence classes of \(G \)-embeddings \(V \to \tilde{V} \) and the \(G \)-equivalence classes of sequences \(\Delta = (\delta_1, \ldots, \delta_m) \) with slice systems.

For two sequences \(\Delta_1 = (\delta^{(1)}_1, \ldots, \delta^{(1)}_m) \) and \(\Delta_2 = (\delta^{(2)}_1, \ldots, \delta^{(2)}_m) \), we define that \(\Delta_1 \) and \(\Delta_2 \) are weakly \(G \)-equivalent iff there is a \((G \times T)\)-equivariant automorphism \(\psi \) of \(B \), not necessarily an \(S \)-automorphism, such that \(\delta^{(2)}_i \circ \psi = \psi \circ \delta^{(1)}_i \) for every \(i \). We define also that two \(G \)-equivariant embeddings \(\varphi_1 \) and \(\varphi_2 \) of \(V \) into \(\tilde{V} \) are weakly \(G \)-equivalent iff there is a \(G \)-equivariant automorphism \(\gamma \) of \(R \) such that \(I_2 = \gamma(I_1) \) where \(I_l \) is the kernel of the surjection \(\Phi_l : R \to S \) associated with \(\varphi_l \) for \(l = 1, 2 \). Then there is a bijective correspondence between the weakly \(G \)-equivalence classes of \(G \)-embeddings \(V \to \tilde{V} \) and the weakly \(G \)-equivalence classes of sequences \(\Delta = (\delta_1, \ldots, \delta_m) \) with slice systems. In fact, Lemma 4.6 holds true when replacing \("G\text{-equivalent}" \) by \("\text{weakly } G\text{-equivalent}" \). The difference between \("G\text{-equivalent}" \) and \("\text{weakly } G\text{-equivalent}" \) is whether one admits the exchange of a system of semi-invariant coordinates of \(V = \text{Spec } S \) or not. Note that a \(G \)-embedding \(\varphi : V \to \tilde{V} \) is \(G \)-rectifiable iff \(\varphi \) is weakly \(G \)-equivalent to the standard \(G \)-embedding \(V \to V \oplus V' \to \tilde{V} \).

Lemma 4.7. Let \(\Delta_l = (\delta^{(l)}_1, \ldots, \delta^{(l)}_m) \) and \(\varphi_l \) be the same as in Lemma 4.6 for \(l = 1, 2 \). Let \(A_{(l)} = \cap_{i=1}^m B^{(l)}_{A_i} \) for \(l = 1, 2 \). Then the following are equivalent.

1. \(\varphi_1 \) and \(\varphi_2 \) are weakly \(G \)-equivalent.
2. \(\Delta_1 \) and \(\Delta_2 \) are weakly \(G \)-equivalent.
3. \(A_{(1)} \) is \((G \times T)\)-equivariantly isomorphic to \(A_{(2)} \).

Proof. The equivalence between (1) and (2) can be proved as in the proof of [9, Lemma 3.7]. It is obvious that (3) follows from (2). We show that (3) implies (2). Suppose that (3) holds. Then there
is a \((G \times T)\)-equivariant isomorphism \(\psi : A_{(1)} \sim A_{(2)}\). The isomorphism \(\psi\) extends to a \((G \times T)\)-automorphism \(\psi\) of \(B\) such that
\[
\delta_i^{(2)} \circ \psi = \psi \circ \delta_i^{(1)} \quad \text{for every } i.
\]
In fact, let \((w_1^{(1)}, \ldots, w_m^{(1)})\) (resp. \((w_1^{(2)}, \ldots, w_m^{(2)})\)) be any semi-invariant slice system of \(\Delta_1\) (resp. \(\Delta_2\)). Then \(B = A_{(1)}[w_1^{(1)}, \ldots, w_m^{(1)}] = A_{(2)}[w_1^{(2)}, \ldots, w_m^{(2)}]\). Define an algebra homomorphism
\[
\psi : B \to B
\]
by extending \(\psi : A_{(1)} \to A_{(2)}\) by
\[
\psi(w_i^{(1)}) = w_i^{(2)}.
\]
Then \(\psi : B \to B\) is the required automorphism and \(\Delta_1\) and \(\Delta_2\) are weakly \(G\)-equivalent.

5. The \((G \times T)\)-action on \(X\) and \(G\)-embeddings

In this section, we continue the notation in the previous section and observe the \(G\)-embedding \(\varphi_{\Delta}\) associated to a sequence on \(B\) and the \((G \times T)\)-action on \(X = \text{Spec } A\).

Let \(\Delta = (\delta_1, \ldots, \delta_m)\) be a sequence with a slice system on \(B = k[u, v_1, \ldots, v_m, x_1, \ldots, x_n]\). Then as observed in the previous section, it follows that \(m \leq n\). Let \((w_1, \ldots, w_m)\) be a semi-invariant slice system of \(\Delta\). Then it follows that \(B = A[w_1, \ldots, w_m]\), i.e.,
\[
X \times V_{-d} \cong Y = L \oplus V_0 \oplus V_{-d} \oplus V'_{-d}
\] \tag{3}
where \(X = \text{Spec } A\). If \(X\) is isomorphic to a \((G \times T)\)-representation, then it follows from (3) that \(X\) is necessarily isomorphic to the \((G \times T)\)-representation
\[
W := L \oplus V_0 \oplus V'_{-d}.
\]
If the associated \(G\)-embedding \(\varphi_{\Delta}\) is \(G\)-rectifiable, then it follows from Lemma 4.4 that \(X \cong W\), namely, the equivariant cancellation holds. By Lemma 4.7, it follows that the associated \(G\)-embedding \(\varphi_{\Delta}\) is \(G\)-rectifiable if and only if \(X \cong W\).

Theorem 5.1. (cf. [9, Theorem 5.1]) Suppose that a sequence \(\Delta\) has a slice system. Then \(X\) is isomorphic to \(W\) if and only if the associated \(G\)-embedding \(\varphi_{\Delta}\) is \(G\)-rectifiable.

As observed in section 2, the \(m\)-dimensional torus \(T'\) acts on \(Y = \text{Spec } B\) where \(T' = T_1 \times \cdots \times T_m\) with \(T_i = G_m\) for \(1 \leq i \leq m\). The \(T_i\)-action on \(Y\) corresponds to the \(\mathbb{Z}\)-grading on \(B = A[w_1, \ldots, w_m]\) such that \(\deg w_i = 1\) and \(\deg a = 0\) for \(a \in B^{\delta_i} - \{0\}\). Since the \(T'\)-action on \(Y\) commutes with the \((G \times T)\)-action, an \((m+1)\)-dimensional torus \((T \times T')\) acts on \(Y\). Note that \(B^{T_i} = B^{\delta_i}\) and \(B^{T'} = A\). Hence \(X = Y//T'\). The algebraic quotient \(Y//T' = \text{Spec } B^{T'}\) is \((G \times T)\)-equivariantly isomorphic to the fixed-point locus \(Y^{T'} = \text{Spec } B/(w_1, \ldots, w_m)\).
Proposition 5.2. The \((G \times T \times T')\)-action on \(Y\) is linearizable if and only if \(X \cong W\).

Proof. If the \((G \times T \times T')\)-action on \(Y\) is linearizable, then \(X = \frac{Y}{W}\) is isomorphic to a \((G \times T)\)-representation, which must be \(W\). Conversely, suppose that \(X \cong W\). Then since the \((G \times T \times T')\)-variety \(Y\) is a product of a \((G \times T)\)-variety \(X\) with a trivial \(T'\)-action and a \((G \times T \times T')\)-representation, the \((G \times T \times T')\)-action on \(Y\) is linearizable.

By Theorem 5.1 and Proposition 5.2, we have the following.

Corollary 5.3. The \((G \times T \times T')\)-action on \(Y\) is linearizable if and only if \(\varphi_\Delta\) is \(G\)-rectifiable.

It is known that the \((T \times T')\)-action on \(Y\) is linearizable iff \(\varphi_\Delta\) is rectifiable (cf. [9, Lemma 4.1]).

In the following, we assume that \(k\) is algebraically closed. Note that \(W\) is isomorphic to \(L \sim V\) as a \(G\)-representation.

Proposition 5.4. Let \(\Delta\) be a sequence on \(B\) having a slice system. Suppose that the \(G\)-action on \(Y\) is fix-pointed and \(V^G = \{0\}\). Then \(X \cong L \oplus \tilde{V}\) as a \(G\)-representation.

Proof. By Lemma 2.2, it follows that \(X \cong \frac{X}{G} \cong W'\) for a \(G\)-representation \(W'\). Note that \(\frac{X}{G} \cong X^G\) since the \(G\)-action on \(X\) is fix-pointed as well. Since \(V^G = \{0\}\), it follows from (3) that \(X^G \cong L \oplus \tilde{V}^G\), hence \(\frac{X}{G}\) is an affine space. Therefore \(X\) is isomorphic to a \(G\)-representation, hence \(X \cong L \oplus \tilde{V}\).

Remark. Under the assumption in Proposition 5.4, the \(G\)-action on \(X_i = \text{Spec} A_i\) is fix-pointed where \(A_i = B^{k_i}\). Hence it follows that every \(X_i\) is isomorphic to a \(G\)-representation.

Suppose that \(G\) is an \(r\)-dimensional torus \((k^*)^r\). Then \(B\) is \(\mathbb{Z}^r\)-graded. If every component of \(\deg v_i\) is positive and every component of \(\deg x_j\) is non-negative, then the \(G\)-action on \(Y\) is fix-pointed and \(V^G = \{0\}\). By Proposition 5.4, it follows that \(X \cong L \oplus \tilde{V}\).

We obtain the following result on \(G\)-embeddings.

Theorem 5.5. Let \(G\) be a complex torus. Let \(V\) and \(\tilde{V}\) be complex \(G\)-representations and let \(\dim \tilde{V}/G \leq 1\). Then every \(G\)-embedding \(V \to \tilde{V}\) is \(G\)-rectifiable.

Proof. Let \(\varphi : V \to \tilde{V}\) be a \(G\)-embedding. By Theorem 5.1 and Proposition 4.3, it suffices to show that \(X = \text{Spec} A\) is isomorphic to
a \((G \times T)\)-representation where \(A\) is the kernel of the sequence \(\Delta_\varphi\) associated to \(\varphi\). Note that \(X\) is smooth and acyclic by (3). Recall that \(X//T = \text{Spec} A^T\) is isomorphic to the \(G\)-representation \(\hat{V}\). Hence the algebraic quotient \(X//((G \times T)) \cong \hat{V} // G\) is of dimension \(\leq 1\). By the results of [2] and [8], \(X\) is isomorphic to the \((G \times T)\)-representation. Hence the assertion follows. \(\square\)

Let \(p_L : X \to L\) be the morphism corresponding to the inclusion \(k[u] \to A\). Then \(p_L\) is \(G\)-equivariant. Since the derivation \(\delta_i\) on \(B_u\) has a slice \(v_i/u^d_i\), it follows from Lemma 2.4 that \(p_L^{-1}(U)\) is \(G\)-equivariantly isomorphic to \(U \times \hat{V}\) where \(U = \text{Spec} k[u]_u\).

Lemma 5.6. (cf. [9, Lemma 4.2]) The morphism \(p_L : X \to L\) is flat and every closed fiber of \(p_L\) is isomorphic to \(\hat{V}\).

Proof. Let \(\bar{p}_L : Y \to L\) be the projection. Then the \(T'\)-action on \(L\) is trivial and \(\bar{p}_L\) is \((G \times T \times T')\)-equivariant. It holds that \(\bar{p}_L = p_L \circ \pi\) where \(\pi : Y \to Y//T' = X\) is the quotient. For a closed point \(c \in L \cong A^1\), \(\bar{p}_L^{-1}(c)\) is \(T'\)-stable and \(p_L^{-1}(c) = \pi(\bar{p}_L^{-1}(c)) = \bar{p}_L^{-1}(c)//T'\) since \(\pi\) is surjective. From the above remark, \(\bar{p}_L^{-1}(c) \cong \hat{V}\) for a closed point \(c \in U\). We show that \(p_L^{-1}(0) \cong V_0 \oplus V_d\). The \(T_i\)-action on \(\bar{p}_L^{-1}(0) = \text{Spec} \hat{B}\) is induced by \(\delta_i\) and its slice \(\hat{w}_i\), where \(\hat{B} = B/(u)\), \(\delta_i\) is the locally nilpotent derivation on \(\hat{B}\) induced by \(\delta_i\), and \(\hat{w}_i\) is the residue class of \(w_i\) in \(\hat{B}\). Since \(\hat{B} = \hat{A}[\hat{w}_1, \ldots, \hat{w}_m]\) where \(\hat{A} = \cap_{i=1}^m \hat{B}^{\delta_i}\), it follows that \(p_L^{-1}(0) = \bar{p}_L^{-1}(0)//T' = \text{Spec} \hat{A}\).

Each derivation \(\delta_i\) on \(\hat{B} \cong k[v_1, \ldots, v_m, x_1, \ldots, x_n]\) is a semi-invariant \(k[v_1, \ldots, v_m]\)-derivation of weight \((-\alpha_i, -d)\) having a slice and satisfies \(\delta_i(x_j) \in k[v_1, \ldots, v_m]\) for \(1 \leq j \leq n\). By Lemma 2.3, it follows that \(\bar{B}^{\delta_i} = k[v_1, \ldots, v_m, \xi_{1,2}, \ldots, \xi_{1,n}]\) where \(\xi_{1,j}\) is of weight \((\beta_j, d)\) and linear in \(x_1, \ldots, x_n\) over \(k[v_1, \ldots, v_m]\). Note that the locally nilpotent derivation \(\delta_2\) on \(\bar{B}^{\delta_1}\) has a slice and \(\delta_2(\xi_{1,j}) \in k[v_1, \ldots, v_m]\) for \(2 \leq j \leq n\). By applying Lemma 2.3 to \(\delta_2\) on \(\bar{B}^{\delta_1}\), we have \(\bar{B}^{\delta_1} \cap \bar{B}^{\delta_2} = k[v_1, \ldots, v_m, \xi_{2,3}, \ldots, \xi_{2,n}]\) where \(\xi_{2,j}\) is of weight \((\beta_j, d)\) and linear in \(x_1, \ldots, x_n\) over \(k[v_1, \ldots, v_m]\). Hence by applying Lemma 2.3 subsequently to \(\delta_i\) on \(\cap_{j=1}^m \bar{B}^{\delta_i}\) for \(2 \leq i \leq m\), we obtain that \(\hat{A}\) is a polynomial ring over \(k[v_1, \ldots, v_m]\) in semi-invariant \(n - m\) variables and \(p_L^{-1}(0) \cong \hat{V}_0 \oplus V_d\). Since every closed fiber \(p_L^{-1}(c)\) is isomorphic to \(A^n\), it follows from [10, 6], [7] that \(p_L\) is flat. \(\square\)

If \(p_L : X \to L\) is an algebraic \(G\)-vector bundle, then \(X\) is isomorphic to a \(G\)-representation. In fact, for a reductive group \(G\), it is well-known that every algebraic \(G\)-vector bundle over a \(G\)-representation \(L\) of dimension one is trivial, i.e., isomorphic to a product bundle \(L \times F\).
for a \(G\)-representation \(F\). Note that \(u\) is a coordinate variable of a polynomial ring \(A\) when \(p_L : X \to L\) is an algebraic \(G\)-vector bundle.

Proposition 5.7. Let \(\Delta\) be a sequence having a slice system. Then \(p_L : X \to L\) is an algebraic \((G \times T)\)-vector bundle if and only if the associated \(G\)-embedding \(\varphi_\Delta\) is \(G\)-rectifiable.

Proof. Suppose that \(p_L : X \to L\) is an algebraic \((G \times T)\)-vector bundle. Since the fiber \(p_L^{-1}(0)\) is isomorphic to \(V_0 \oplus V'_d\) (cf. the proof of Lemma 5.6), it follows that \(X \cong L \oplus V_0 \oplus V'_d = W\). Hence by Theorem 5.1, \(\varphi_\Delta\) is \(G\)-rectifiable. Conversely, suppose that \(\varphi_\Delta\) is \(G\)-rectifiable. Then by Lemma 4.4, \(A\) is a polynomial ring with semi-invariant coordinates with respect to the \((G \times T)\)-action and \(u\) is a semi-invariant coordinate variable of \(A\). Hence \(p_L : X \to L\) is a trivial \((G \times T)\)-vector bundle.

Finally, we give three examples and discuss problems related to them.

Example 5.1. Let \(V = \text{Spec } \mathbb{R}[v]\) and \(\tilde{V} = \text{Spec } \mathbb{R}[x_1, x_2, x_3]\) be \(\mathbb{Z}/2\mathbb{Z}\)-representations with weight 1 and \((1, 0, 1)\), respectively, namely, with the linear \(\mathbb{Z}/2\mathbb{Z}\)-actions

\[
\tau \cdot v = -v, \quad \tau \cdot (x_1, x_2, x_3) = (-x_1, x_2, -x_3)
\]

for a generator \(\tau \in \mathbb{Z}/2\mathbb{Z}\). Let \(\varphi : V \to \tilde{V}\) be an embedding associated with the surjection \(\Phi : \mathbb{R}[x_1, x_2, x_3] \to \mathbb{R}[v]\) defined by \(\Phi(x_1) = v^3, \quad \Phi(x_2) = v^4, \quad \Phi(x_3) = v^5 + v\) (cf. [3]). Then \(\varphi\) is \(\mathbb{Z}/2\mathbb{Z}\)-equivariant. The locally nilpotent derivation \(\delta\) on \(B = \mathbb{R}[u, v, x_1, x_2, x_3]\) associated to \(\varphi\) is

\[
\delta = u^d \partial_u + 3v^2 \partial_{x_1} + 4v^3 \partial_{x_2} + (5v^4 + 1) \partial_{x_3}
\]

which is semi-invariant of weight \((1, -d)\). It is known that \(\varphi\) is rectifiable by [3]. In fact, the \(\mathbb{Z}/2\mathbb{Z}\)-equivariant automorphism \(\Psi\) of \(\mathbb{R}[x_1, x_2, x_3]\) given by

\[
\Psi(x_1) = x_1^3 x_2 + 2x_1^3 x_3 - x_1 x_3^3 \\
\Psi(x_2) = -2 - 5x_2^4 + 6x_1 x_3^5 - 2x_2^2 x_3^6 + (1 + 2x_1 x_3 + 4x_1^2 x_3^2 - 12x_1 x_3^3 + 6x_1^4 x_3^4)(x_2 + 2) + (x_1^4 + 6x_1^5 x_3 - 6x_1^6 x_3^2)(x_2 + 2)^2 + 2x_1^8 (x_2 + 2)^3 \\
\Psi(x_3) = x_1 - (x_1^3 x_2 + 2x_3^3 + x_3 - x_1 x_3^2)^3
\]

rectifies \(\varphi\) into the standard \(\mathbb{Z}/2\mathbb{Z}\)-embedding. Hence the kernel \(A = B^3\) is \((\mathbb{Z}/2\mathbb{Z} \times \mathbb{R}^3)\)-equivariantly isomorphic to a polynomial ring \(\mathbb{R}[u, \tilde{v}, y_2, y_3]\) where the weight of \(u, \tilde{v}, y_2\) and \(y_3\) is \((0, -1), (1, 0), (0, d)\) and \((1, d)\), respectively. Therefore \(X = \text{Spec } A\) is a \((\mathbb{Z}/2\mathbb{Z} \times \mathbb{R}^*)\)-representation \(W = \text{Spec } \mathbb{R}[u, \tilde{v}, y_2, y_3]\).
Example 5.2. Let $V^* = \text{Spec } \mathbb{C}[v]$ and $\tilde{V}^* = \text{Spec } \mathbb{C}[x_1, x_2, x_3]$ be the $\mathbb{Z}/4\mathbb{Z}$-representations on which the $\mathbb{Z}/4\mathbb{Z}$-actions are given by

$$\lambda \cdot v = \zeta^v, \quad \lambda \cdot (x_1, x_2, x_3) = (\zeta^3 x_1, x_2, \zeta x_3)$$

where λ is a generator of $\mathbb{Z}/4\mathbb{Z}$ and ζ is the 4-th primitive root of unity. As a representation of the subgroup $\mathbb{Z}/2\mathbb{Z}$ of $\mathbb{Z}/4\mathbb{Z}$, $V^* = V \otimes_{\mathbb{R}} \mathbb{C} =: V_{\mathbb{C}}$ and $\tilde{V}^* = \tilde{V} \otimes_{\mathbb{R}} \mathbb{C} =: \tilde{V}_{\mathbb{C}}$. The surjection $\Phi : \mathbb{R}[x_1, x_2, x_3] \to \mathbb{R}[v]$ extends to a surjection $\mathbb{C}[x_1, x_2, x_3] \to \mathbb{C}[v]$ and the extended surjection defines a $\mathbb{Z}/4\mathbb{Z}$-embedding $\varphi^* : V^* \to \tilde{V}^*$ which restricts to a $\mathbb{Z}/2\mathbb{Z}$-embedding $\varphi_{\mathbb{C}} : V_{\mathbb{C}} \to \tilde{V}_{\mathbb{C}}$. The locally nilpotent derivation $\delta_{\mathbb{C}}$ associated to φ^* is of the same form as δ and semi-invariant of weight $(-1, -d)$. Let $A_{\mathbb{C}} = B_{\mathbb{C}}^{\delta_{\mathbb{C}}}$ where $B_{\mathbb{C}} = \mathbb{C}[u, v, x_1, x_2, x_3]$. The automorphism Ψ induces a $\mathbb{Z}/2\mathbb{Z}$-equivariant automorphism $\Psi_{\mathbb{C}}$ of $\mathbb{C}[x_1, x_2, x_3]$, which rectifies $\varphi_{\mathbb{C}}$. Hence $X_{\mathbb{C}} = \text{Spec } A_{\mathbb{C}}$ is isomorphic to the $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{C}^*)$-representation $W_{\mathbb{C}} = W \otimes_{\mathbb{R}} \mathbb{C}$. The automorphism $\Psi_{\mathbb{C}}$ is not $\mathbb{Z}/4\mathbb{Z}$-equivariant and we do not know whether the $(\mathbb{Z}/4\mathbb{Z} \times \mathbb{C}^*)$-action on $X \cong A_{\mathbb{A}}^3$ is linearizable or not.

Example 5.3. Let V and \tilde{V} be as in Example 5.1 and let $\varphi : V \to \tilde{V}$ be a $\mathbb{Z}/2\mathbb{Z}$-embedding associated with the surjection Φ defined by $\Phi(x_1) = v^3 - 3v, \Phi(x_2) = v^4 - 4v^2, \Phi(x_3) = v^5 - 10v$. The locally nilpotent derivation on B associated to φ is

$$\delta = u^4 \partial_v + (3v^2 - 3)\partial_{x_1} + (4v^3 - 8v)\partial_{x_2} + (5v^4 - 10)\partial_{x_3}$$

which is semi-invariant of weight $(1, -d)$. It is known that φ is non-rectifiable by [11] and [1]. Hence X is not isomorphic to the $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{R}^*)$-representation W. It follows from [1] and [9] that X is not \mathbb{R}^*-equivariantly isomorphic to W, neither. However, it is not known whether X is isomorphic to $A_{\mathbb{A}}^3$ or not if we forget the action. If $X \cong A_{\mathbb{A}}^3$, then it follows that the $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{R}^*)$-action on $X \cong A_{\mathbb{A}}^3$ is non-linearizable. By Corollary 5.3, the $(\mathbb{Z}/2\mathbb{Z} \times (\mathbb{R}^*)^2)$-action on $Y \cong A_{\mathbb{R}}^5$ is non-linearizable (cf. [1]). It is unknown neither whether there exists a non-linearizable action of a finite subgroup of $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{R}^*)^2$ on Y. The surjection Φ induces a surjection $\mathbb{C}[x_1, x_2, x_3] \to \mathbb{C}[v]$ which defines a $\mathbb{Z}/2\mathbb{Z}$-embedding $\varphi_{\mathbb{C}} : V_{\mathbb{C}} \to \tilde{V}_{\mathbb{C}}$. It remains open whether $\varphi_{\mathbb{C}}$ is rectifiable or not.

References

Department of Mathematical Sciences, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
E-mail address: kayo@kwansei.ac.jp