CERTAIN MODULI OF ALGEBRAIC G-VECTOR BUNDLES OVER AFFINE G-VARIETIES

KAYO MASUDA

ABSTRACT. Let G be a reductive complex algebraic group and Pa complex G-module with algebraic quotient of dimension ≥ 1 . We construct a map from a certain moduli space of algebraic Gvector bundles over P to a \mathbb{C} -module possibly of infinite dimension, which is an isomorphism under some conditions. We also show nontriviality of moduli of algebraic G-vector bundles over a G-stable affine hypersurface of some type. In particular, we show that the moduli space of algebraic G-vector bundles over a G-stable affine quadric with fixpoints and one-dimensional quotient contains \mathbb{C}^p .

INTRODUCTION AND RESULTS

Let G be a reductive algebraic group defined over the ground field \mathbb{C} of complex numbers. One of the most important problems in the theory of algebraic group action is to understand algebraic G-actions on affine space \mathbb{A}^n . The following problem is fundamental;

Linearization Problem

Is every action of G on \mathbb{A}^n linearizable, i.e., conjugate to a linear action under polynomial automorphisms of \mathbb{A}^n ?

In 1989, Schwarz [23] presented the first examples of non-linearizable actions on affine space. In fact, he first showed that there exist nontrivial algebraic G-vector bundles over G-modules, and the non-lineari zable actions appear on the total spaces of non-trivial algebraic Gvector bundles he found. An algebraic G-vector bundle E over an affine G-variety X is an algebraic vector bundle $p: E \to X$ together with a G-action on E such that p is G-equivariant and the action on the fibers is linear. By definition, every fiber over the fixpoint locus X^G is a G-module. An algebraic G-vector bundle is called trivial if it is isomorphic to a G-vector bundle of the form $X \times Q \to X$ for a G-module Q. When the base space is a G-module, if forgetting the Gaction, the total space E is an affine space by the affirmative solution to the Serre Conjecture by Quillen [22] and Suslin [25]. So, the G-action

¹⁹⁹¹ Mathematics Subject Classification. Primary: 14R20; Secondary: 14D20.

on the total space of a non-trivial G-vector bundle over a G-module is a candidate for a non-linearizable action on affine space. In fact, there are some criteria for the G-action on E being non-linearizable ([1],[7], [18]). So far, all known examples of non-linearizable action are obtained from non-trivial algebraic G-vector bundles. For an abelian G, at this point, there are no counterexamples to the Linearization Problem; for, by Masuda-Moser-Petrie [19], every G-vector bundle over a G-module is trivial when G is abelian. The key point of their proof is to show that one can reduce triviality of a G-vector bundle over a G-module P to triviality of a vector bundle over the algebraic quotient space P//G(=the spectrum of the ring of G-invariant polynomials on P). Since G is abelian, P//G is a normal affine toric variety, and triviality of a vector bundle over a normal affine toric variety was obtained by Gubeladze [5]. We refer to Kraft [10] for recent topics in affine algebraic geometry and algebraic group action related to the Linearization Problem.

In this article, we study algebraic G-vector bundles over affine Gvarieties X, especially in the case that X is a G-module. Throughout this article, we assume that X is irreducible and smooth and that X^G is non-empty. We denote by $\operatorname{VEC}_G(X,Q)$ the set of equivariant isomorphism classes of algebraic G-vector bundles over X such that every fiber over X^G is isomorphic to a G-module Q. The isomorphism class of a G-vector bundle $E \to X$ is denoted by [E]. Suppose that the base space is a G-module P. In this case, we have some information on $\text{VEC}_G(P, Q)$ ([1], [2], [23], [11], [6], [18], [20]). By Bass-Haboush [1], every G-vector bundle over P is stably trivial, i.e., there exists a G-module S such that a Whitney sum $E \oplus (P \times S)$ is trivial. For an abelian G, $VEC_G(P,Q)$ is trivial, i.e., a trivial set consisting of the trivial class $[P \times Q]$ by Masuda-Moser-Petrie [19]. For a non-abelian G, if the dimension of P//G is at most one, $\operatorname{VEC}_G(P,Q)$ is well-understood. When dim P//G = 0, VEC_G(P,Q) is trivial ([2], [12]). When dim P//G = 1, however, $\text{VEC}_G(P, Q)$ can be non-trivial. Schwarz ([23], cf. Kraft-Schwarz [11]) showed that $VEC_G(P,Q)$ is isomorphic to an additive group \mathbb{C}^p for a nonnegative integer p, and the non-trivial G-vector bundles found by Schwarz led to the first examples of non-linearizable actions on affine space, as is already mensioned The result of Schwarz extends to the case where the base above. space is a (not necessarily irreducible) G-stable affine cone X with one-dimensional quotient, namely, it holds that $\operatorname{VEC}_G(X,Q) \cong \mathbb{C}^p$ for some p ([21],[15]). However, when dim $P//G \ge 2$, VEC_G(P,Q) is not finite-dimensional any more. In fact, $\operatorname{VEC}_G(P \oplus \mathbb{C}^m, Q)$ for a G-module P with one-dimensional quotient and a trivial G-module \mathbb{C}^m is isomorphic to the p times direct product of a polynomial ring $\mathbb{C}[y_1, \cdots, y_m]$

where p is a nonnegative integer such that $\operatorname{VEC}_G(P,Q) \cong \mathbb{C}^p$ [16]. Furthermore, Mederer [21] presented examples of $\operatorname{VEC}_G(P,Q)$ which contains an uncountably-infinite dimensional space for a finite group G. Using Mederer's result, it is shown that $\operatorname{VEC}_G(P,Q)$ can contain an uncountably-infinite dimensional space also for a connected group G [17]. However, $\operatorname{VEC}_G(X,Q)$ are not yet classified even when X is a G-module P with dim $P//G \geq 2$ except some special cases ([6], cf. [20]) and the cases mensioned above.

We denote by $\mathcal{O}(X)$ the \mathbb{C} -algebra of regular functions on X and by $\mathcal{O}(X)^G$ the subalgebra of G-invariants of $\mathcal{O}(X)$. By the finiteness theorem of Hilbert, $\mathcal{O}(X)^G$ is finitely generated and the algebraic quotient space X//G is defined to be Spec $\mathcal{O}(X)^G$. Let $\pi_X : X \to X//G$ be the algebraic quotient map, that is, the morphism induced by the inclusion $\mathcal{O}(X)^G \hookrightarrow \mathcal{O}(X)$. Since X is irreducible, X//G is an irreducible affine variety (cf. [8]). By Luna's slice theorem [12], there is a finite stratification of $X//G = \bigcup_i V_i$ into locally closed subvarieties V_i such that $\pi_X|_{\pi_X^{-1}(V_i)}$: $\pi_X^{-1}(V_i) \to V_i$ is a G-fiber bundle (in the étale topology) and the isotropy groups of closed orbits in $\pi_X^{-1}(V_i)$ are all conjugate to a fixed reductive subgroup H_i . The unique open dense stratum of X//G, which we denote by U, is called the principal stratum and the corresponding isotropy group, which we denote by H, is called a principal isotropy group. The principal isotropy group H is the minimal group among H_i up to conjugation. Suppose that dim $X//G \ge 1$. We denote by $\operatorname{VEC}_G(X, Q)_0$ the subset of $\operatorname{VEC}_G(X, Q)$ consisting of elements which are trivial over $\pi_X^{-1}(U)$ and $\pi_X^{-1}(V)$ with fiber Q where V := X//G - U. Though we do not know how to compute $\operatorname{VEC}_G(X, Q)$, it is not difficult to analyse $\operatorname{VEC}_G(X, Q)_0$ since every $[E] \in \operatorname{VEC}_G(X, Q)_0$ is determined by a transition function with respect to two trivializations of E. In the case that X is a (not necessarily irreducible) G-stable affine cone with dim X//G = 1, in particular, a G-module with one-dimensional quotient, $\operatorname{VEC}_G(X \times \mathbb{A}^m, Q)$ and $\operatorname{VEC}_G(X \times \mathbb{A}^m, Q)_0$ coincide and we can compute $\operatorname{VEC}_G(X \times \mathbb{A}^m, Q)_0$ by analysing transition functions ([11], [16]). We assume that the ideal of V is principal; for, if $[E] \in VEC_G(X, Q)$ is trivial over $\pi_X^{-1}(U)$ such that $\pi_X^{-1}(V)$ is of codimension ≥ 2 , then E is trivial. Our first result is a classification of $\operatorname{VEC}_G(P, Q)_0$ for a *G*-module *P* with dim $P//G \ge 2$.

Theorem 1. Let P be a G-module such that $\dim P//G \ge 2$ and the ideal of the complement of the principal stratum in P//G is principal. Let Q be a G-module. Then there exists a map

$$\Psi_{P,Q}$$
: VEC_G $(P,Q)_0 \to C_P(Q)$.

Here $C_P(Q)$ is a \mathbb{C} -module possibly of infinite dimension (cf. 2.3). If Q is multiplicity free with respect to a principal isotropy group of P and if P has generically closed orbits, then $\Psi_{P,Q}$ is an isomorphism.

Here, a *G*-module Q is called "multiplicity free with respect to a reductive subgroup H" if every irreducible *H*-module appears in Q, viewed as an *H*-module, with multiplicity at most one, and we say "*P* has generically closed orbits" if every fiber of the quotient map π_P over the principal stratum consists of a closed orbit.

For any *G*-module *P* with one-dimensional quotient and any *Q*, $\Psi_{P\oplus\mathbb{C}^m,Q}$ in Theorem 1 is an isomorphism onto $C_{P\oplus\mathbb{C}^m}(Q) \cong (\mathbb{C}[y_1,\cdots, y_m])^p$, which coincides with the isomorphism obtained in [16].

Next, we investigate $\operatorname{VEC}_G(X, Q)_0$ for an affine quadric X. An affine quadric of dimension N is an affine hypersurface $X := \{(x_0, \cdots, x_N) \in$ $\mathbb{A}^{N+1} \mid \sum_{i=0}^{N} x_i^2 = 1$. We suppose that G is connected and acts on an affine quadric X in such a way that the kernel of the action is finite. Suppose also that X^G is not empty and dim X//G = 1. Then by Doebeli ([3] [4]), X is G-isomorphic to an affine quadric $X_P :=$ $\{(x, v) \in P \oplus \mathbb{C} \mid u(x) + v^2 = 1\}$, where P is an orthogonal G-module with $P//G \cong \mathbb{A}^1$ and $u(x) \in \mathcal{O}(P)^G$ is an invariant quadratic form generating $\mathcal{O}(P)^G$. The G-action on X_P is the one induced by the linear action on P. This time, however, the situation is rather different from that in the case of G-modules. The fixpoint locus X_P^G consists of two points $\{(O, \pm 1)\}$ where O is the origin of P, whereas the fixpoint locus of a G-module is an affine space, hence connected. Though $X_P //G$ is isomorphic to $\mathbb{A}^1 = \operatorname{Spec} \mathbb{C}[v], V$ of $X_P//G$ consists of two points $\{v = \pm 1\}$, hence V of $X_P//G$ is disconnected. For a G-module, V is connected since V is defined by invariant homogeneous polynomials. Thus we cannot apply methods in case of G-modules directly to a case of an affine quadric. While, note that X is viewed as a $G \times (\mathbb{Z}/2\mathbb{Z})$ variety, where $\mathbb{Z}/2\mathbb{Z}$ acts on $X \cong X_P \subset P \oplus \mathbb{C}$ via a (non-trivial) linear action on \mathbb{C} . Then $X/(\mathbb{Z}/2\mathbb{Z}) \cong P$ as a G-variety. It is easy to see that the quotient map $\pi_{\mathbb{Z}_2}: X \to X/(\mathbb{Z}/2\mathbb{Z}) \cong P$ induces an injection $\pi^*_{\mathbb{Z}_2}$: VEC_G(P,Q) \rightarrow VEC_G(X,Q) (cf. [9]). Since VEC_G(P,Q) $\cong \mathbb{C}^p$ by the result of Schwarz, $VEC_G(X, Q)$ contains a space isomorphic to \mathbb{C}^p . We generalize this and obtain the following result.

Theorem 2. Let P be a G-module with dim $P//G \ge 1$. For $f \in \mathcal{O}(P)^G$ and an integer $d \ge 2$, let $X_P(f, d)$ be a G-stable hypersurface $\{(x, v) \in P \oplus \mathbb{C} \mid f(x) + v^d = 1\}$. Then, the quotient map $\pi_{\mathbb{Z}_d} : X_P(f, d) \to X_P(f, d)/(\mathbb{Z}/d\mathbb{Z}) \cong P$ induces an injection for any G-module Q

$$\pi^*_{\mathbb{Z}_d}$$
: VEC_G(P,Q) \rightarrow VEC_G(X_P(f,d),Q).

Hence, if $\Psi_{P,Q}$ in Theorem 1 is a surjection onto a non-trivial $C_P(Q)$, then $\operatorname{VEC}_G(X_P(f,d),Q)$ is non-trivial, too.

This article consists of three parts. In section 1, we investigate $\operatorname{VEC}_G(X,Q)_0$ for an irreducible smooth affine *G*-variety *X* by analysing transition functions of *G*-vector bundles. We have in mind as an *X* a *G*-module. Our technique is based on the one established by Kraft-Schwarz [11]. Using the results obtained in section 1, we prove Theorem 1 in section 2. We compute $\operatorname{VEC}_G(P,Q)_0$ explicitly in examples. In section 3, we ingestigate $\operatorname{VEC}_G(X,Q)_0$ in the case where *V* is not connected, in particular, in the case where *X* is a *G*-stable affine hypersurface represented by an affine quadric with fixpoints and one-dimensional quotient.

The author expresses her gratitude to Professor M. Brion for suggesting to observe algebraic G-vector bundles over affine quadrics. She thanks also M. Miyanishi for his encouragement.

1. General results

Let G be a reductive algebraic group and X an irreducible smooth affine G-variety. We assume that the dimension of Y := X//G is greater than 0 and the ideal of V = Y - U is principal, where U is the principal stratum of Y. Let $f \in \mathcal{O}(Y) = \mathcal{O}(X)^G$ be a generator of the ideal of V. We assume also that X^G is non-empty, connected and X^H is irreducible where H is a principal isotropy group of X. The object we have in mind as an X is a G-module. We will investigate $\operatorname{VEC}_G(X, Q)_0$ for a G-module Q.

Lemma 1.1. Let $[E] \in VEC_G(X, Q)_0$. Then E is trivial over $X_h := \{x \in X \mid h(x) \neq 0\}$ where h is an element of $\mathcal{O}(Y)$ such that h - 1 is contained in the ideal (f).

Proof. Since $E|_{\pi_X^{-1}(V)}$ is, by the assumption, isomorphic to a trivial bundle, it follows from the Equivariant Nakayama Lemma [2] that the trivialization $E|_{\pi_X^{-1}(V)} \to \pi_X^{-1}(V) \times Q$ extends to a trivialization over a G-stable open neighborhood \tilde{U} of $\pi_X^{-1}(V)$. Let \tilde{V} be the complement of \tilde{U} in X. Since \tilde{V} is a G-stable closed set, $\pi_X(\tilde{V})$ is closed in Y [8]. Note that $V \cap \pi_X(\tilde{V}) = \emptyset$ since $\pi_X^{-1}(V) \cap \tilde{V} = \emptyset$. Let $\mathfrak{I} \subset \mathcal{O}(Y)$ be the ideal which defines $\pi_X(\tilde{V})$. Then $(f) + \mathfrak{I} \ni 1$ since $V \cap \pi_X(\tilde{V}) = \emptyset$. Hence there exists an $h \in \mathfrak{I}$ such that $h - 1 \in (f)$. Since $Y_h \subset Y - \pi_X(\tilde{V})$, $X_h = \pi_X^{-1}(Y_h) \subset \pi_X^{-1}(Y - \pi_X(\tilde{V})) \subset \tilde{U}$. Thus E is trivial over X_h . \Box We define an affine scheme $\tilde{Y} = \operatorname{Spec} \tilde{A}$ by

$$A = \{h_1/h_2 | h_1, h_2 \in \mathcal{O}(Y), h_2 - 1 \in (f)\}.$$

Set $\tilde{Y}_f := Y_f \times_Y \tilde{Y}$, $\tilde{X} := \tilde{Y} \times_Y X$ and $\tilde{X}_f := \tilde{Y}_f \times_Y X$. The group of morphisms from X to $M := \operatorname{GL}(Q)$ is denoted by Mor (X, M) or M(X). The group G acts on M by conjugation via the representation $\rho : G \to \operatorname{GL}(Q)$. The action of G on M(X) is defined by $(g \cdot \mu)(x) = \rho(g)\mu(g^{-1}x)\rho(g)^{-1}$ for $g \in G$, $x \in X$, $\mu \in M(X)$. We denote the group of G-invariants of M(X) by Mor $(X, M)^G$ or $M(X)^G$. Let $[E] \in \operatorname{VEC}_G(X, Q)_0$. Then by the definition of $\operatorname{VEC}_G(X, Q)_0$, E has a trivialization over $\pi_X^{-1}(U) = X_f$, and by Lemma 1.1 E has a trivialization also over an open neighborhood of $\pi_X^{-1}(V)$, i.e., X_h for some $h \in \mathcal{O}(Y)$ such that $h - 1 \in (f)$. Hence, assigning to [E] the transition function with respect to the trivializations $E|_{X_f} \cong X_f \times Q$ and $E|_{X_h} \cong X_h \times Q$, we have a bijection to a double coset (cf. [15, 3.4])

$$\operatorname{VEC}_G(X,Q)_0 \cong M(X_f)^G \backslash M(\tilde{X}_f)^G / M(\tilde{X})^G.$$

Since X^H is irreducible, the inclusion $X^H \hookrightarrow X$ induces an isomorphism $X^H/N(H) \xrightarrow{\sim} X//G$ where N(H) is the normalizer of H in G [14]. Set W := N(H)/H. When we consider X^H as a W-variety, we denote it by B. Note that the principal isotropy group of B is trivial. Let $\beta : M(X)^G \to L(B)^W$ be the restriction map where $L := \operatorname{GL}(Q)^H$. We say X has generically closed orbits if $\pi_X^{-1}(\xi)$ for any $\xi \in Y_f$ consists of a closed orbit, i.e. $\pi_X^{-1}(\xi) \cong G/H$. When X has generically closed orbits, $GX_f^H = X_f$. Hence $M(X_f)^G = \operatorname{Mor}(GX_f^H, \operatorname{GL}(Q))^G \cong L(B_f)^W$, i.e., β is an isomorphism over Y_f . The group homomorphism β induces a map

$$\operatorname{VEC}_{G}(X,Q)_{0} \cong M(X_{f})^{G} \backslash M(X_{f})^{G} / M(\tilde{X})^{G} \to L(B_{f})^{W} \backslash L(\tilde{B}_{f})^{W} / \beta(M(\tilde{X})^{G}), \qquad (1)$$

which is an isomorphism when X has generically closed orbits.

We decompose Q as an H-module

$$Q \cong \bigoplus_{i=1}^q n_i Q_i$$

where Q_i are pairwise non-isomorphic irreducible *H*-modules and n_i is the multiplicity of Q_i . We call *Q* multiplicity free with respect to *H* if $n_i = 1$ for all *i*. It follows from Schur's lemma that

$$L = \mathrm{GL}(Q)^H \cong \prod_{i=1}^q GL_{n_i}.$$

Let T be the center of L. Then T is W-stable and $T \cong (\mathbb{C}^*)^q$. When Q is multiplicity free with respect to H, L = T. Look at the action of W on T. Note that $g \in N(H)$ permutes the H-isotypic components n_iQ_i $(i = 1, \dots, q)$. Since $w \in W$ acts on L by conjugation by $\rho(g)$ where $g \in N(H)$ is a representative of w, W acts on $T \cong (\mathbb{C}^*)^q$ by permuting \mathbb{C}^* s. Hence W acts on T as a subgroup of the symmetric group S_q via a continuous homomorphism from W to S_q . Thus the connected component W_0 of W containing the identity acts trivially on T and the action of W on T reduces to the action of W/W_0 . The determinant map on each factor GL_{n_i} of L induces a homomorphism of groups; $\tau : L(B)^W \to T(B)^W$. The homomorphism τ induces a map

$$L(B_f)^W \setminus L(\tilde{B}_f)^W / \beta(M(\tilde{X})^G) \to T(\tilde{B}_f)^W / (T(B_f)^W (\tau \circ \beta) M(\tilde{X})^G).$$
(2)

By (1) and (2), we have

Lemma 1.2. There exists a map

$$\psi_{X,Q} : \operatorname{VEC}_G(X,Q)_0 \to T(\tilde{B}_f)^W / (T(B_f)^W (\tau \circ \beta) M(\tilde{X})^G).$$

If Q is multiplicity free with respect to H and X has generically closed orbits, then $\psi_{X,Q}$ is an isomorphism.

REMARKS 1. For $t \in \mathcal{O}(Y)$, let $\operatorname{VEC}_G(X,Q;t)$ be the subset of $\operatorname{VEC}_G(X,Q)$ consisting of elements [E] such that E is trivial over $\pi_X^{-1}(Y_t)$ and its complement. Then one obtains, in a similar way to the above, a map from $\operatorname{VEC}_G(X,Q;t)$ to a quotient group.

2. When *H* is trivial, M = L and the target residue group in Lemma 1.2 is $\mathcal{O}(\tilde{Y}_f)^*/\mathcal{O}(Y_f)^*\tau(M(\tilde{X})^G)$, where $\mathcal{O}(\tilde{Y}_f)^*$ (resp. $\mathcal{O}(Y_f)^*$) denotes the group of invertible elements in $\mathcal{O}(\tilde{Y}_f)$ (resp. $\mathcal{O}(Y_f)$). If Q contains a trivial *G*-module, then $\tau = \det : M(\tilde{X})^G \to \mathcal{O}(\tilde{Y})^*$ is surjective. Furthermore, if Pic Y = (0), then the residue group $\mathcal{O}(\tilde{Y}_f)^*/\mathcal{O}(Y_f)^*\tau(M(\tilde{X})^G)$ becomes trivial (cf. proof of Lemma 1.3). Thus when *H* is trivial and Pic Y = (0) (e.g. *X* is a *G*-module with a trivial principal isotropy group), $\psi_{X,Q}$ becomes trivial if *Q* contains a trivial *G*-module.

We will analyse the target residue group in Lemma 1.2. We pose the following conditions:

- (I) V is connected and $\mathcal{O}(\pi_B^{-1}(V))^* = \mathbb{C}^*$.
- (II) The restriction $\mathcal{O}(\pi_B^{-1}(V))^* \to \mathcal{O}(X^G)^*$ is an isomorphism.

It follows from the conditions (I) and (II) that the restriction of $\pi_B^{-1}(V)$ onto X^G induces an isomorphism $T(\pi_B^{-1}(V))^W \cong T^W(X^G) \cong T^W$. Set

$$T(\tilde{B})_{1} := \{ \mu \in T(\tilde{B}) \mid \mu|_{\pi_{B}^{-1}(V)} = I \}$$

$$T(\tilde{B})_{1}^{W} := T(\tilde{B})_{1} \cap T(\tilde{B})^{W}$$

where I is the constant map to the identity element of T. Note that $T(\tilde{B}) = T(\tilde{B})_1 T(\pi_B^{-1}(V)) = T(\tilde{B})_1 T$.

Lemma 1.3. Suppose that the conditions (I) and (II) are satisfied. If $\operatorname{Pic} B = (0)$ and $\mathcal{O}(B)^* = \mathbb{C}^*$, then

$$T(\tilde{B}_f)^W = T(B_f)^W T(\tilde{B})_1^W.$$

Proof. We first claim that $T(\tilde{B}_f) = T(B_f)T(\tilde{B})_1$. Since $T(\tilde{B}) = T(\tilde{B})_1T$, it suffices to prove $T(\tilde{B}_f) = T(B_f)T(\tilde{B})$. Note that every element of $T(\tilde{B}_f)$ is considered as a transition function of a Whitney sum of line bundles over B with respect to trivializations over B_f and an open neighborhood of $\pi_B^{-1}(V)$. Since Pic B = (0), every line bundle over B is trivial. This implies that $T(\tilde{B}_f) = T(B_f)T(\tilde{B})$. Let $\mu \in T(\tilde{B}_f)^W$. Write $\mu = \dot{\mu}\tilde{\mu}$ with $\dot{\mu} \in T(B_f)$ and $\tilde{\mu} \in T(\tilde{B})_1$. Note that $T(B_f) \cap T(\tilde{B})_1 = T(B)_1 = \{I\}$ since $\mathcal{O}(B)^* = \mathbb{C}^*$. Since μ is W-invariant, we have $\dot{\mu}^{-1}(w \cdot \dot{\mu}) = \tilde{\mu}(w \cdot \tilde{\mu})^{-1} \in T(B_f) \cap T(\tilde{B})_1 = \{I\}$ for every $w \in W$. Hence $\dot{\mu}$ and $\tilde{\mu}$ are W-invariant, and the assertion is thus verified. \Box

Set

$$M(\tilde{X})_1^G := \{ \mu \in M(\tilde{X})^G \mid \mu|_{X^G} = I \}.$$

Note that $(\tau \circ \beta)(M(\tilde{X})_1^G) \subset T(\tilde{B})_1^W$ under the conditions (I) and (II).

Lemma 1.4. Suppose that the assumptions in Lemma 1.3 are satisfied. If there exists a G-equivariant morphism $r: X \to X^G$ such that $r \circ i =$ id where $i: X^G \hookrightarrow X$ is the inclusion, then there exists an isomorphism

$$T(\tilde{B}_f)^W/(T(B_f)^W(\tau \circ \beta)M(\tilde{X})^G) \cong T(\tilde{B})_1^W/(\tau \circ \beta)(M(\tilde{X})_1^G).$$

Proof. We claim that $(\tau \circ \beta)M(\tilde{X})^G \subset (\tau \circ \beta)(M(\tilde{X})^G_1)T^W$. In fact, let $\mu \in M(\tilde{X})^G$ and $\mu_0 := \mu|_{X^G} \in M^G(X^G)$. Then $(\tau \circ \beta)\mu_0 \in T^W(X^G) \cong T^W$. Let $p: M^G(X^G) \to M(X)^G$ be the group homomorphism induced by r. Then $\tilde{\mu} := p(\mu_0) \in M(X)^G$ satisfies $\tilde{\mu}|_{X^G} = \mu_0$. Since $\mathcal{O}(B)^* = \mathbb{C}^*, (\tau \circ \beta)\tilde{\mu} \in T^W$. The claim follows from that $\mu = \mu_1\tilde{\mu}$ where $\mu_1 = \mu\tilde{\mu}^{-1} \in M(\tilde{X})^G_1$. Since $(\tau \circ \beta)M(\tilde{X})^G \subset (\tau \circ \beta)(M(\tilde{X})^G_1)T^W$ and $T(B_f)^W \cap T(\tilde{B})^W_1 = T(B)^W_1 = \{I\}$, we obtain by Lemma 1.3 the desired isomorphism.

We proceed to analyse the residue group $T(\tilde{B})_1^W/(\tau \circ \beta)(M(\tilde{X})_1^G)$.

Let \hat{Y} be the completion of Y along V and let $\hat{B} = \hat{Y} \times_Y B$ and $\hat{X} = \hat{Y} \times_Y X$. Note that an element of $M(\hat{X})^G$ (resp. $T(\hat{B})^W$) is considered as an invertible matrix (resp. an invertible diagonal matrix) with entries in $\mathcal{O}(\hat{X})$ (resp. $\mathcal{O}(\hat{B})$) invariant under the *G*-action (resp. the *W*-action). For $r \geq 1$, we define

$$T(\hat{B})_r^W := \{ \mu \in T(\hat{B})^W \mid \mu = I \mod \mathfrak{b}^r \mathcal{O}(\hat{B}) \}$$

$$M(\hat{X})_r^G := \{ \mu \in M(\hat{X})^G \mid \mu = I \mod \mathfrak{a}^r \mathcal{O}(\hat{X}) \},$$

where $\mathfrak{a} \subset \mathcal{O}(X)$ denotes the ideal of $X^G \subset X$ and $\mathfrak{b} \subset \mathcal{O}(B)$ denotes the ideal of $\pi_B^{-1}(V)$, i.e. $\mathfrak{b} = \sqrt{(f)}$. We define $L(\hat{B})_r^W$, similarly. Then there exists a canonical map

$$T(\tilde{B})_1^W/(\tau \circ \beta)(M(\tilde{X})_1^G) \to T(\hat{B})_1^W/(\tau \circ \beta)(M(\hat{X})_1^G)$$

We will show that this canonical map is a surjection when X has generically closed orbits. First, we prove

Lemma 1.5. For every $r \geq 1$,

$$T(\hat{B})_1^W = T(\tilde{B})_1^W T(\hat{B})_r^W$$

Proof. It is clear that $T(\hat{B})_1^W \supset T(\tilde{B})_1^W T(\hat{B})_r^W$. We show the opposite inclusion. Let $\mu = (\mu_1(x), \ldots, \mu_q(x)) \in T(\hat{B})_1^W$ where $\mu_i(x) \in \mathcal{O}(\hat{B})$ and $\mu_i = 1 \mod \mathfrak{bO}(\hat{B})$. Recall that W acts on $T \cong (\mathbb{C}^*)^q$ by permuting \mathbb{C}^* s. Since the identity component W_0 acts trivially on T, $\mu_i(x) \in \mathcal{O}(\hat{B})^{W_0}$ for $1 \leq i \leq q$. Let $\bar{\mu}_i(x) \in \mathcal{O}(B)^{W_0}$ be a function such that $\mu_i(x) = \bar{\mu}_i(x) \mod \mathfrak{b}^r \mathcal{O}(\hat{B})$. Since $\mu_i = 1 \mod \mathfrak{bO}(\hat{B})$, $\bar{\mu}_i = 1 \mod \mathfrak{bO}(\hat{B})$, $\bar{\mu}_i = 1 \mod \mathfrak{b}$. Define $\bar{\mu} := (\bar{\mu}_1(x), \ldots, \bar{\mu}_q(x))$ and $\tilde{\mu} := \prod_{w \in W/W_0} w \cdot \bar{\mu}$. Then $\tilde{\mu} \in T(\tilde{B})_1^W$ and $\tilde{\mu}^{-1}\mu \in T(\hat{B})_r^W$.

Let \mathfrak{m} , \mathfrak{l} and \mathfrak{t} be the Lie algebras of M, L and T, respectively. Then $\mathfrak{m} = \operatorname{End} Q$, $\mathfrak{l} = \operatorname{End} (Q)^H \cong \bigoplus_{i=1}^q M_{n_i}$ and $\mathfrak{t} \cong \mathbb{C}^q$ where M_{n_i} denotes an $(n_i \times n_i)$ -matrix. Let $\beta_* : \mathfrak{m}(X)^G \to \mathfrak{l}(B)^W$ be the homomorphism of $\mathcal{O}(Y)$ -modules induced by the restriction of X onto B. Similarly, let $\tau_* : \mathfrak{l}(B)^W \to \mathfrak{t}(B)^W$ be the homomorphism induced by the trace map on each M_{n_i} of $\mathfrak{l} \cong \bigoplus_{i=1}^q M_{n_i}$. Note that

$$\mathfrak{t}(B)^W \cong (\mathcal{O}(B) \otimes_{\mathbb{C}} \mathfrak{t})^W, \quad \mathfrak{l}(B)^W \cong (\mathcal{O}(B) \otimes_{\mathbb{C}} \mathfrak{l})^W$$

and $\mathfrak{m}(X)^G \cong (\mathcal{O}(X) \otimes_{\mathbb{C}} \mathfrak{m})^G,$

which are all finitely generated modules over $\mathcal{O}(Y)$ (cf. [8, II,3.2]). For a positive integer r, we define

$$\begin{aligned} \mathfrak{t}(B)_r^W &:= (\mathfrak{b}^r \otimes_{\mathbb{C}} \mathfrak{t})^W, \\ \mathfrak{l}(B)_r^W &:= (\mathfrak{b}^r \otimes_{\mathbb{C}} \mathfrak{l})^W, \\ \mathfrak{m}(X)_r^G &:= (\mathfrak{a}^r \otimes_{\mathbb{C}} \mathfrak{m})^G, \end{aligned}$$

which are also finitely generated modules over $\mathcal{O}(Y)$. We define $\mathfrak{t}(\hat{B})_r^W$, $\mathfrak{l}(\hat{B})_r^W$ and $\mathfrak{m}(\hat{X})_r^G$, similarly. The exponentials $\exp: \mathfrak{l} \to L$ and $\exp: \mathfrak{m} \to M$ induce isomorphisms (with inverse log) $\mathfrak{l}(\hat{B})_r^W \xrightarrow{\sim} L(\hat{B})_r^W$ and $\mathfrak{m}(\hat{X})_r^G \xrightarrow{\sim} M(\hat{X})_r^G$ (Here, the latter exponential series converges in the \mathfrak{a} -adic topology).

Lemma 1.6. Suppose that X has generically closed orbits. Then there exists an integer r_0 such that $\beta_*\mathfrak{m}(X)_1^G \supset \mathfrak{l}(B)_r^W$ and $\beta(M(\hat{X})_1^G) \supset L(\hat{B})_r^W$ for all $r \geq r_0$.

Proof. Let $\{C_i\}$ and $\{A_j\}$ be generating systems of $\mathfrak{l}(B)_1^W$ and $\mathfrak{m}(X)_1^G$ over $\mathcal{O}(Y)$, respectively. Since X has generically closed orbits, $\beta_* :$ $\mathfrak{m}(X_f)^G \to \mathfrak{l}(B_f)^W$ is an isomorphism. Thus C_i is written as $C_i = \beta_*(\sum_j c_{ij}A_j)$ where $c_{ij} \in \mathcal{O}(Y)_f$. Let $e_{ij} \geq 0$ be the minimal integer such that $f^{e_{ij}}c_{ij} \in \mathcal{O}(Y)$ and d be the minimal integer such that $\mathfrak{b}^d \subseteq (f)$. Put $e := \max_{i,j} \{e_{ij}\}$ and $r_0 := de + 1$. Then for $r \geq r_0$, any element of $\mathfrak{l}(B)_r^W$ is of the form f^eC where $C \in \mathfrak{l}(B)_1^W$. Since $C = \sum_i c_i C_i$ for $c_i \in \mathcal{O}(Y)$ and $f^e c_{ij} \in \mathcal{O}(Y)$ for every i, j, so $f^eC \in \beta_*\mathfrak{m}(X)_1^G$. Hence $\beta_*\mathfrak{m}(X)_1^G \supset \mathfrak{l}(B)_r^W$. The second inclusion follows from $\beta_*\mathfrak{m}(\hat{X})_1^G \supset \mathfrak{l}(\hat{B})_r^W$ via the exponential maps. \Box

REMARK In order to prove Lemma 1.6, it is sufficient to hold that $\beta_* : \mathfrak{m}(X_f)^G \to \mathfrak{l}(B_f)^W$ is surjective.

Since $\tau_* : \mathfrak{l}(\hat{B})_r^W \to \mathfrak{t}(\hat{B})_r^W$ is the trace map, τ_* is surjective. Hence, via the exponential maps, $T(\hat{B})_r^W = \tau(L(\hat{B})_r^W)$. Under the assumption in Lemma 1.6, $T(\hat{B})_r^W = \tau(L(\hat{B})_r^W) \subset (\tau \circ \beta)(M(\hat{X})_1^G)$ for a sufficiently large r. By this together with Lemma 1.5, we obtain

Lemma 1.7. Suppose that X has generically closed orbits. Then the canonical map

$$T(\tilde{B})_1^W/(\tau \circ \beta)(M(\tilde{X})_1^G) \to T(\hat{B})_1^W/(\tau \circ \beta)(M(\hat{X})_1^G)$$

is a surjection. Furthermore, if Q is multiplicity free with respect to H, then $L(\tilde{B})_1^W/\beta(M(\tilde{X})_1^G) \to L(\hat{B})_1^W/\beta(M(\hat{X})_1^G)$ is an isomorphism.

Proof. The first assertion is clear from the above statement. As for the second assertion, it suffices to show that the canonical map

is injective. We will show that $\beta(M(\hat{X})_1^G) \cap L(\tilde{B})_1^W \subset \beta(M(\tilde{X})_1^G)$. Let $\hat{D} \in M(\hat{X})_1^G$ and $\beta(\hat{D}) \in \beta(M(\hat{X})_1^G) \cap L(\tilde{B})_1^W$. We regard \hat{D} as an element of $\mathfrak{m}(\hat{X})^G$ and show that $\hat{D} \in \mathfrak{m}(\tilde{X})^G$. Since $\beta(\hat{D}) \in L(\tilde{B})_1^W$ is translated as $\beta_*(\hat{D}) \in \mathfrak{l}(\tilde{B})^W$, it follows from Lemma 1.6 that $f^r\beta_*(\hat{D}) = \beta_*(\tilde{D})$ for a sufficiently large r and $\tilde{D} \in \mathfrak{m}(\tilde{X})^G$. Since X has generically closed orbits, $\beta_* : \mathfrak{m}(X_f)^G \to \mathfrak{l}(B_f)^W$ is an isomorphism, so, $\beta_* : \mathfrak{m}(X)^G \to \mathfrak{l}(B)^W$ is an injection. Hence $\beta_* : \mathfrak{m}(\hat{X})^G \to \mathfrak{l}(\hat{B})^W$ is also an injection. Thus $f^r\hat{D} = \tilde{D}$. This implies that $\hat{D} \in \mathfrak{m}(\tilde{X})^G$. Hence $\hat{D} \in M(\tilde{X})_1^G$ and the assertion follows. \Box

The logarithmic map induces an isomorphism

$$T(\hat{B})_1^W/(\tau \circ \beta)(M(\hat{X})_1^G) \cong \mathfrak{t}(\hat{B})_1^W/\tau_*\beta_*\mathfrak{m}(\hat{X})_1^G.$$

We set

$$C_X(Q) := \mathfrak{t}(B)_1^W / \tau_* \beta_* \mathfrak{m}(X)_1^G.$$

When Q is multiplicity free with respect to H, $C_X(Q) = \mathfrak{l}(\hat{B})_1^W / \beta_* \mathfrak{m}(\hat{X})_1^G$. By the results obtained so far, we have

Theorem 1.8. There exists a map

$$T(\tilde{B})_1^W/(\tau \circ \beta)(M(\tilde{X})_1^G) \to \mathfrak{t}(\hat{B})_1^W/\tau_*\beta_*\mathfrak{m}(\hat{X})_1^G = C_X(Q),$$

which is an isomorphism when Q is multiplicity free with respect to H and X has generically closed orbits.

2. G-vector bundles over G-modules

In this section, we consider the case where the base space X is a G-module P and give a proof of Theorem 1 in the introduction. Let P be a G-module such that Y = P//G is of dimension ≥ 1 and the ideal of V = Y - U is principal. Note that the ideal of V is generated by an invariant homogeneous polynomial $f \in \mathcal{O}(P)^G$ and that V is connected. Let H be a principal isotropy group of P and let $B = P^H$.

Lemma 2.1. (1) Pic B = (0) and $\mathcal{O}(B)^* = \mathcal{O}(P^G)^* = \mathbb{C}^*$. (2) $\pi_B^{-1}(V)$ is a connected affine cone and $\mathcal{O}(\pi_B^{-1}(V))^* = \mathbb{C}^*$.

Proof. (1) The assertion follows from the fact that B and P^G are affine spaces.

(2) One easily sees that $\pi_B^{-1}(V)$ is a connected affine cone. Indeed, $\pi_B^{-1}(V)$ is a union of irreducible reduced affine cones $\cup_j \operatorname{Spec} R^{(j)}$ passing through the origin. Each affine cone $\operatorname{Spec} R^{(j)}$ has a positively graded integral domain $R^{(j)} = \bigoplus_{k>0} R_k^{(j)}$ as the coordinate ring such that $R_0^{(j)} = \mathbb{C}$. Since $(R^{(j)})^* = \mathbb{C}^*$ for each j, the standard argument in commutative algebras shows that $\mathcal{O}(\pi_B^{-1}(V))^* = \mathbb{C}^*$.

The projection $p: P \to P^G$ is *G*-equivariant and has the property $p \circ i = id$ for the inclusion $i: P^G \hookrightarrow P$. By this fact and the results obtained so far, we obtain a map $\Psi_{P,Q}$ for a *G*-module *Q*;

$$\begin{aligned} \operatorname{VEC}_{G}(P,Q)_{0} & \stackrel{\psi_{P,Q}}{\to} & T(\tilde{B}_{f})^{W}/(T(B_{f})^{W}(\tau \circ \beta)M(\tilde{P})^{G}) \quad (\operatorname{Lemma 1.2}) \\ & \cong & T(\tilde{B})_{1}^{W}/(\tau \circ \beta)(M(\tilde{P})_{1}^{G}) \quad (\operatorname{Lemmas 1.4, 2.1}) \\ & \to & \mathfrak{t}(\hat{B})_{1}^{W}/\tau_{*}\beta_{*}\mathfrak{m}(\hat{P})_{1}^{G} = C_{P}(Q) \quad (\operatorname{Theorem 1.8}). \end{aligned}$$

Hence we have

Theorem 2.2. Let P be a G-module as above and let Q be a G-module. There is a map

$$\Psi_{P,Q}$$
: VEC_G $(P,Q)_0 \to C_P(Q)$

which is an isomorphism when Q is multiplicity free with respect to H and P has generically closed orbits.

REMARKS 1. Let P be any G-module and let t be a G-invariant homogeneous polynomial on P. We use the notation in the remark of Lemma 1.2. By the construction similar to the above, one obtains a map

$$\Psi_{P,Q}(t): \operatorname{VEC}_G(P,Q;t) \to \mathfrak{t}(\hat{B})_1^W / \tau_* \beta_* \mathfrak{m}(\hat{P})_1^G =: C_{P,t}(Q)$$

where the completion is (t)-adic completion. One can show that $\Psi_{P,Q}(t)$ is surjective for any *G*-module *Q* if one takes $t \in \mathcal{O}(Y)$ so that Y_t is contained in the principal stratum of $\overline{GP^H}$ (cf. [15, 1.1], [2, 6.5]).

2. When H is trivial and Q contains a trivial G-module, $\psi_{P,Q}$ is trivial (remark of Lemma 1.2), hence $\Psi_{P,Q}$ is also trivial.

This completes the proof of Theorem 1 in the introduction except the statement on $C_P(Q)$. Note that Theorem 1 holds also in the case $\dim P//G = 1$. When $\dim P//G = 1$, it is known that $P//G \cong \mathbb{A}^1$ and $\operatorname{VEC}_G(P \oplus \mathbb{C}^m, Q) = \operatorname{VEC}_G(P \oplus \mathbb{C}^m, Q)_0$ for $m \ge 0$ ([11], [16]). Suppose that $\dim P//G = 1$. Then $C_P(Q)$ is a finite \mathbb{C} -module by the formula (3) below (cf. Lemma 2.3) and $C_{P \oplus \mathbb{C}^m}(Q) \cong (\mathbb{C}[y_1, \cdots, y_m])^p$ by easy calculation. By comparing $\Psi_{P \oplus \mathbb{C}^m, Q}$ with the isomorphism $\operatorname{VEC}_G(P \oplus \mathbb{C}^m, Q) \xrightarrow{\sim} (\mathbb{C}[y_1, \cdots, y_m])^p$ given in [16] (cf. [11]), one sees that $\Psi_{P \oplus \mathbb{C}^m, Q}$ for $m \ge 0$ is an isomorphism for any P and Q.

Now, we look at $C_P(Q)$ more closely. A *G*-module *P* is called *cofree* if $\mathcal{O}(P)$ is a free module over $\mathcal{O}(P)^G$. It is known that cofree modules are coregular, i.e., P//G is isomorphic to affine space (cf. [24]). Furthermore, if P^H is a cofree N(H)-module, then *P* is a cofree *G*-module

[24]. We suppose that B is a cofree W-module and make some obeservation on $C_P(Q)$. Then, $\mathcal{O}(Y)$ is isomorphic to a polynomial ring and $\mathfrak{m}(P)^G$ and $\mathfrak{t}(B)^W$ are finite free modules over $\mathcal{O}(Y)$. Since \mathfrak{b} is principal, $\mathfrak{t}(B)^W_1$ is also a finite free module over $\mathcal{O}(Y)$. The rank of $\mathfrak{t}(B)^W_1$ is the same as the rank of $\mathfrak{t}(B)^W$, which is equal to $q = \dim \mathfrak{t}$ [24]. Note that $\mathcal{O}(Y)$, $\mathfrak{m}(P)^G$ and $\mathfrak{t}(B)^W$ inherit a grading on $\mathcal{O}(P)$. Since \mathfrak{a} and \mathfrak{b} are homogeneous ideals, $\mathfrak{m}(P)^G_1$ and $\mathfrak{t}(B)^W_1$ are also graded. Let $\{A_i; 1 \leq i \leq \ell\}$ be a homogeneous generating system of $\mathfrak{m}(P)^G_1$ over $\mathcal{O}(Y)$ and let $\{C_i; 1 \leq i \leq q\}$ be a homogeneous basis of $\mathfrak{t}(B)^W_1$ over $\mathcal{O}(Y)$. Then

$$\tau_*\beta_*A_i = \sum_{j=1}^q a_{ij}C_j \quad \text{for} \quad a_{ij} \in \mathcal{O}(Y).$$

Noting that $\mathfrak{t}(\hat{B})_1^W = \mathfrak{t}(B)_1^W \otimes_{\mathcal{O}(Y)} \mathcal{O}(\hat{Y})$ and $\mathfrak{m}(\hat{P})_1^G = \mathfrak{m}(P)_1^G \otimes_{\mathcal{O}(Y)} \mathcal{O}(\hat{Y})$,

$$C_P(Q) \cong \bigoplus_{j=1}^q \mathcal{O}(\hat{Y}) / \hat{\mathfrak{a}}_j \tag{3}$$

where $\widehat{\mathfrak{a}}_j = \mathfrak{a}_j \mathcal{O}(\hat{Y})$ and \mathfrak{a}_j is the ideal in $\mathcal{O}(Y)$ generated by $\{a_{ij}; 1 \leq i \leq \ell\}$. Let $e_j = \deg C_j$ and $a_i = \deg A_i$. Since τ_* and β_* preserve the grading, $\deg a_{ij} = a_i - e_j$ if $a_{ij} \neq 0$. The following is easily proved.

Lemma 2.3. Suppose that B is cofree. If there is some j such that $a_i > e_j$ for any i, then $C_P(Q)$ is non-trivial. If there exists some j such that $\operatorname{ht} \mathfrak{a}_j < \operatorname{dim} Y$, then $C_P(Q)$ is an infinite dimensional \mathbb{C} -module.

REMARK The module $C_P(Q)$ can be of infinite dimension, but of countably-infinite dimension.

This completes the proof of Theorem 1. By Theorem 2.2 and Lemma 2.3, we have

Corollary 2.4. Suppose that $\Psi_{P,Q}$ in Theorem 2.2 is surjective and B is cofree. If $a_i > e_j$ for some j and any i, then $\operatorname{VEC}_G(P,Q)_0$ is non-trivial. If there exists some j such that $\operatorname{ht} \mathfrak{a}_j < \dim Y$, then $\operatorname{VEC}_G(P,Q)_0$ contains an infinite dimensional space.

We give a couple of examples.

Example 2.1

Let $G = SL_n$ $(n \ge 2)$ and let P be the Lie algebra \mathfrak{sl}_n with adjoint action. We denote a maximal torus of G by T_n and its Lie algebra by \mathfrak{t}_n . Then the principal isotropy group of \mathfrak{sl}_n is T_n and $B = (\mathfrak{sl}_n)^{T_n} = \mathfrak{t}_n$. $W = N(T_n)/T_n$ is the Weyl group which is isomorphic to S_n . The

algebraic quotient space Y is $\mathfrak{sl}_n//G \cong \mathfrak{t}_n//W \cong \mathbb{A}^{n-1}$ and V is of codimension one. Hence the ideal of V is generated by a single homogeneous polynomial $f \in \mathcal{O}(Y) \cong \mathbb{C}[t_1, \cdots, t_{n-1}]$. Since the general fiber of the quotient map of \mathfrak{sl}_n is isomorphic to G/T_n , \mathfrak{sl}_n has generically closed orbits. Let φ_1 be the standard representation space of G and $\varphi_1^m \ (m \ge 1)$ be the symmetric tensor product $S^m(\varphi_1)$. Let $Q = \varphi_1^m$. Then Q is multiplicity free with respect to T_n . Hence $L = T \cong (\mathbb{C}^*)^q$ for $q = \dim Q = \binom{n+m-1}{m}$. Consider the case n = 2. Then $G = SL_2$ and the quotient map

is given by the determinant map $t: P = \mathfrak{sl}_2 \to \mathfrak{sl}_2//G \cong \mathbb{A}^1$. Hence $\mathcal{O}(Y) = \mathbb{C}[t]$ and t is, as an element of $\mathcal{O}(B)^W$, written as $t = x^2$ with a coordinate x on $B = \mathfrak{t}_2 \cong \mathbb{C}$. Note that $T_2 \cong \mathbb{C}^*$ and $W \cong \mathbb{Z}/2\mathbb{Z}$. The stratification of $\mathfrak{sl}_2//G = \mathbb{A}^1$ consists of two strata, $\{0\}$ and $\mathbb{A}^1 - \{0\}$. Hence $V = \{0\}$ and f = t. Let R_m be the SL_2 -module of binary forms of degree *m*. Then $P = \mathfrak{sl}_2 \cong R_2$ and $Q \cong R_m$. As a $T_2 = \mathbb{C}^*$ -module, $Q = \bigoplus_{l=0}^{m} Q_{m-2l}$ where Q_{m-2l} is an irreducible T_2 -module with weight m-2l. As a G-module, $\mathfrak{m} = \operatorname{End} R_m \cong (R_m)^* \otimes R_m \cong \bigoplus_{l=0}^m R_{2l}$. Hence,

$$\mathfrak{m}(\mathfrak{sl}_2)^G \cong \bigoplus_{l=0}^m (\mathcal{O}(R_2) \otimes R_{2l})^G = \bigoplus_{l=0}^m M_l$$

and

$$\mathfrak{l}(\mathfrak{t}_2)^W \cong \bigoplus_{l=0}^m (\mathcal{O}(\mathfrak{t}_2) \otimes R_{2l}^{T_2})^W = \bigoplus_{l=0}^m N_l$$

where $M_l := (\mathcal{O}(R_2) \otimes R_{2l})^G$ and $N_l := (\mathcal{O}(\mathfrak{t}_2) \otimes R_{2l}^{T_2})^W$. The modules M_l and N_l are free over $\mathcal{O}(Y) = \mathbb{C}[t]$ of rank one. In fact, since $M_l \cong$ $Mor(R_2, R_{2l})^G$, the homogeneous generator A_l of M_l is given by the *l*-th power map and the homogeneous generator C_l of $N_l = (\mathbb{C}[x] \otimes R_{2l}^{T_2})^W$ is given by $1 \otimes e_l$ for l even, $x \otimes e_l$ for l odd, where e_l is a base of $R_{2l}^{\overline{T_2}} \cong \mathbb{C}$. Hence $\mathfrak{m}(\mathfrak{sl}_2)^G$ and $\mathfrak{l}(\mathfrak{t}_2)^W$ are free modules over $\mathbb{C}[t]$ of rank m+1. Note that deg $A_l = l$ and deg C_l is 0 for l even, 1 for l odd. Since $\mathbb{C}[t]$ is a principal ideal domain, $\mathfrak{m}(\mathfrak{sl}_2)_1^G$ is also free over $\mathbb{C}[t]$. A homogeneous basis of $\mathfrak{m}(\mathfrak{sl}_2)_1^G$ over $\mathbb{C}[t]$ is $\{tA_0, A_l; l = 1, 2, \cdots, m\}$ since $\mathfrak{sl}_2^G =$ $\{O\}$. Since $\mathfrak{b} = \sqrt{(t)} = (x)$, a homogeneous basis of $\mathfrak{l}(\mathfrak{t}_2)_1^W$ over $\mathbb{C}[t]$ is $\{tC_0, tC_{2l}, C_{2l-1}; l = 1, \cdots, m/2\}$ for m even, $\{tC_{2l}, C_{2l+1}; l = 1, \cdots, m/2\}$ $[0, 1, \cdots, [m/2]]$ for m odd. Here, [a] denotes the largest integer notexceeding a. Since $\beta_*(A_l) = t^{[l/2]}C_l$,

$$C_{\mathfrak{sl}_2}(\varphi_1^m) \cong \mathfrak{l}(\mathfrak{t}_2)_1^W / \beta_* \mathfrak{m}(\mathfrak{sl}_2)_1^G \cong \mathbb{C}^p$$

where $p = \sum_{l=1}^{m} [(l-1)/2] = [(m-1)^2/4]$. Since it follows from $\mathfrak{sl}_2//G \cong$ \mathbb{A}^1 that $\operatorname{VEC}_G(\mathfrak{sl}_2,\varphi_1^m) = \operatorname{VEC}_G(\mathfrak{sl}_2,\varphi_1^m)_0$, we have by Theorem 2.2

Proposition 2.5. [23] Let $G = SL_2$. Then

 $\operatorname{VEC}_G(\mathfrak{sl}_2, \varphi_1^m) \cong \mathbb{C}^p$ for $p = [(m-1)^2/4].$

Next, consider the case that $n \geq 3$. As a *G*-module,

$$\mathfrak{m} = \operatorname{End} \varphi_1^m \cong (\varphi_1^m)^* \otimes \varphi_1^m \cong \oplus_{l=0}^m \mathfrak{sl}_n^l$$

where \mathfrak{sl}_n^l is the irreducible component of the highest weight in $S^l(\mathfrak{sl}_n)$. Hence

$$\mathfrak{m}(\mathfrak{sl}_n)^G \cong \oplus_{l=0}^m (\mathcal{O}(\mathfrak{sl}_n) \otimes \mathfrak{sl}_n^l)^G = \oplus_{l=0}^m M_l$$

where $M_l := (\mathcal{O}(\mathfrak{sl}_n) \otimes \mathfrak{sl}_n^l)^G$. Similarly,

$$\mathfrak{l}(\mathfrak{t}_n)^W \cong \bigoplus_{l=0}^m (\mathcal{O}(\mathfrak{t}_n) \otimes (\mathfrak{sl}_n^l)^{T_n})^W = \bigoplus_{l=0}^m N_l$$

where $N_l := (\mathcal{O}(\mathfrak{t}_n) \otimes (\mathfrak{sl}_n^l)^{T_n})^W$. It is known that \mathfrak{t}_n is cofree (cf. [24]). Thus M_l and N_l , hence $\mathfrak{m}(\mathfrak{sl}_n)^G$ and $\mathfrak{l}(\mathfrak{t}_n)^W$, are finite free modules over $\mathcal{O}(Y)$. Since $\mathcal{O}(\mathfrak{sl}_n) \cong \bigoplus_{d \ge 0} S^d(\mathfrak{sl}_n), M_l \cong \bigoplus_{d \ge 0} (S^d(\mathfrak{sl}_n) \otimes \mathfrak{sl}_n^l)^G$. Hence every homogeneous generator of M_l has degree $\ge l$. The homomorphism $\beta_* : \mathfrak{m}(\mathfrak{sl}_n)^G \to \mathfrak{l}(\mathfrak{t}_n)^W$ maps M_l to N_l . Set $M(1)_l := (\mathfrak{a} \otimes \mathfrak{sl}_n^l)^G$ and $N(1)_l := (\mathfrak{b} \otimes (\mathfrak{sl}_n^l)^{T_n})^W$. Then $\mathfrak{m}(\mathfrak{sl}_n)_1^G = \bigoplus_{l=0}^m M(1)_l$ and $\mathfrak{l}(\mathfrak{t}_n)_1^W = \bigoplus_{l=0}^m N(1)_l$. The homomorphism β_* maps $M(1)_l$ to $N(1)_l$. Let $\{A_i\}$ be a homogeneous generating system of $M(1)_m$ over $\mathcal{O}(Y)$ and $\{C_i\}$ be a homogeneous basis of $N(1)_m$ over $\mathcal{O}(Y)$. Then $\beta_*(A_i) = \sum_j a_{ij}C_j$ for $a_{ij} \in \mathcal{O}(Y)$. Since deg $A_i \ge m$ for all i and deg $C_j < |W| + \deg f$ [8, II,3.6], deg $a_{ij} > 0$ if m is sufficiently large. Hence $N(1)_m/\beta_*(M(1)_m)$ is non-trivial for $m \gg 0$. We have by Theorem 2.2;

Proposition 2.6. (cf. [6]) Let $n \geq 3$ and $G = SL_n$. For $m \geq 1$, VEC_G($\mathfrak{sl}_n, \varphi_1^m)_0 \cong C_{\mathfrak{sl}_n}(\varphi_1^m)$. In particular, VEC_G($\mathfrak{sl}_n, \varphi_1^m)_0$ is nontrivial for a sufficiently large m.

REMARK In order to show that $C_{\mathfrak{sl}_n}(\varphi_1^m)$ contains an infinite dimensional module for $n \geq 3$, we need to prove that the height of the ideal \mathfrak{a}_j generated by $a_{ij} \in \mathcal{O}(Y)$ (cf. Lemma 2.3) is smaller than n-1. However, to calculate generators of $N(1)_l$ and $M(1)_l$ by hand is a hard job.

Next is a new example of $\operatorname{VEC}_G(P,Q)_0$ contains an infinite dimensional space.

Example 2.2

Let $P = P_1 \oplus P_2$ and $G = G_1 \times G_2$ where P_i is a G_i -module with one-dimensional quotient for i = 1, 2. Then P is a G-module with trivial G_i -actions on P_j for $i \neq j$ and $P//G \cong \mathbb{A}^2$. A principal isotropy group H of P is $H_1 \times H_2$ where H_i is a principal isotropy group of P_i . The complement of the principal stratum in $P//G \cong \mathbb{A}^2$ is a union of two lines. Let Q_i (i = 1, 2) be a G_i -module. By the statement below Theorem 2.2, there are isomorphisms $\operatorname{VEC}_{G_i}(P_i, Q_i) \cong C_{P_i}(Q_i) \cong \mathbb{C}^{p_i}$ for i = 1, 2. Let $Q = Q_1 \oplus Q_2$. Then Q is multiplicity free with respect

to H when Q_i is multiplicity free with respect to H_i for i = 1, 2 and $\dim(Q_1^{H_1} \oplus Q_2^{H_2}) \leq 1$. In this case, $C_P(Q)$ is easily computed and isomorphic to $\mathbb{C}[u_1]^{p_2} \oplus \mathbb{C}[u_2]^{p_1}$ where $\mathcal{O}(P_1)^{G_1} = \mathbb{C}[u_1]$ and $\mathcal{O}(P_2)^{G_2} = \mathbb{C}[u_2]$. By Theorem 2.2, we have with the above notation

Theorem 2.7. Suppose that Q_i is multiplicity free with respect to H_i for i = 1, 2 and $\dim(Q_1^{H_1} \oplus Q_2^{H_2}) \leq 1$. Then there is a map

$$\operatorname{VEC}_G(P_1 \oplus P_2, Q_1 \oplus Q_2)_0 \to \mathbb{C}[u_1]^{p_2} \oplus \mathbb{C}[u_2]^{p_1},$$

which is an isomorphism when P_i has generically closed orbits for i = 1, 2.

REMARK One can show that the map in Theorem 2.7 is surjective for any Q and any P_i by using the fact that $Z_f = GP_f^H$ for $Z := \overline{GP^H}$ when $\mathcal{O}(P)^G = \mathbb{C}[f]$ (cf. [15, 1.1], the remark of Theorem 2.2).

Apply Theorem 2.7 to the case where $G = SL_2 \times SL_2$, $P = \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and $Q = \varphi_1^m \oplus \varphi_1^n$. Since \mathfrak{sl}_2 has generically closed orbits and φ_1^m is multiplicity free with respect to a principal isotropy group of \mathfrak{sl}_2 for $m \geq 1$, we have

Theorem 2.8. Let $G = SL_2 \times SL_2$. Then

 $\operatorname{VEC}_{G}(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2}, \varphi_{1}^{m} \oplus \varphi_{1}^{n})_{0} \cong \mathbb{C}[u_{1}]^{p(n)} \oplus \mathbb{C}[u_{2}]^{p(m)}.$ Here $p(n) = [(n-1)^{2}/4]$ and either m or n is odd.

3. G-vector bundles over $G \times (\mathbb{Z}/d\mathbb{Z})$ -varieties

In this section, we consider in the case that V is not connected. Such a case occurs when X is a G-stable affine quadric with fixpoints and one-dimensional quotient. As is remarked in the introduction, when G is connected, such an affine quadric X is G-isomorphic to an affine quadric

$$X_P = \{(x, v) \in P \oplus \mathbb{C} \mid u(x) + v^2 = 1\}$$

where P is an orthogonal G-module with $P//G \cong \mathbb{A}^1$ and u(x) is an invariant quadratic form on P such that $\mathcal{O}(P)^G = \mathbb{C}[u]$. Recall that X_P is viewed as a $G \times (\mathbb{Z}/2\mathbb{Z})$ -variety. We generalize this situation. Let P be anew a G-module as in section 2, i.e., P is a G-module such that $\dim P//G \ge 1$ and the ideal of the complement of the principal stratum in P//G is generated by a homogeneous polynomial $f \in \mathcal{O}(P)^G$. For $d \ge 2$, define a G-stable hypersurface $X_P(d)$ as follows;

$$X_P(d) := \{ (x, v) \in P \oplus \mathbb{C} \mid f(x) + v^d = 1 \}.$$

Then the fixpoint locus $X_P(d)^G$ consists of d connected components. The complement V of the principal stratum in $X_P(d)//G$ has d connected components and each connected component of $\pi_{X_P(d)}^{-1}(V)$ contains one connected component of $X_P(d)^G$. A principal isotropy group H of $X_P(d)$ is a principal isotropy group of P. As in the case of affine quadrics, $X_P(d)$ has a $\mathbb{Z}/d\mathbb{Z}$ -action induced by a (non-trivial) linear action of $\mathbb{Z}/d\mathbb{Z}$ on \mathbb{C} . Hence $X_P(d)$ is viewed as a $G \times (\mathbb{Z}/d\mathbb{Z})$ -variety. Then $X_P(d)/(\mathbb{Z}/d\mathbb{Z})$ is G-isomorphic to P. Let $\pi_{\mathbb{Z}_d} : X_P(d) \to X_P(d)/(\mathbb{Z}/d\mathbb{Z}) \cong P$ be the quotient by $\mathbb{Z}/d\mathbb{Z}$. Let $[E] \in \operatorname{VEC}_G(P,Q)$ for a G-module Q. Then $\pi_{\mathbb{Z}_d}^* E$ is a $G \times (\mathbb{Z}/d\mathbb{Z})$ -vector bundle over $X_P(d)$. Viewing $\pi_{\mathbb{Z}_d}^* E$ as a G-vector bundle, we obtain a map

$$\pi^*_{\mathbb{Z}_d}$$
: $\operatorname{VEC}_G(P, Q) \to \operatorname{VEC}_G(X_P(d), Q).$

Since $E \cong \pi^*_{\mathbb{Z}_d} E / (\mathbb{Z}/d\mathbb{Z})$ [9], we have

Lemma 3.1. The map $\pi^*_{\mathbb{Z}_d}$ is injective.

Note that $\pi^*_{\mathbb{Z}_d}$ maps $\operatorname{VEC}_G(P,Q)_0$ to $\operatorname{VEC}_G(X_P(d),Q)_0$. By Lemma 3.1 and Theorem 2.2, we obtain

Theorem 3.2. The map $\pi^*_{\mathbb{Z}_d}$ induces an injection

$$\operatorname{VEC}_G(P,Q)_0 \to \operatorname{VEC}_G(X_P(d),Q)_0.$$

Hence, if $\Psi_{P,Q}$ in Theorem 2.2 is a surjection onto a non-trivial $C_P(Q)$, then $\operatorname{VEC}_G(X_P(d), Q)_0$ is non-trivial.

If we take as an f in the definition of $X_P(d)$ any G-invariant polynomial on P, then we obtain Theorem 2 in the introduction.

REMARK Theorem 3.2 is generalized as follows. Let P_i (i = 1, 2) be a G_i -module such that dim $P_1//G_1 \ge 1$ and dim $P_2//G_2 = 1$. Let t be a homogeneous generator of $\mathcal{O}(P_2)^{G_2}$. For $f \in \mathcal{O}(P_1)^{G_1}$, define a $G_1 \times G_2$ -stable hypersurface X(f) as follows:

$$X(f) := \{ (x_1, x_2) \in P_1 \oplus P_2 \mid f(x_1) + t(x_2) = 1 \}.$$

Then the quotient map $\pi_{G_2} : X(f) \to X(f)//G_2 \cong P_1$ induces an injection for a G_1 -module Q

$$\pi_{G_2}^* : \operatorname{VEC}_{G_1}(P_1, Q) \to \operatorname{VEC}_{G_1}(X(f), Q).$$

Recall that $\operatorname{VEC}_G(P,Q)_0 = \operatorname{VEC}_G(P,Q) \cong \mathbb{C}^p$ when P has onedimensional quotient. Hence we have by Theorem 3.2

Corollary 3.3. Suppose that X_P is a *G*-stable affine quadric defined as above. Then $\operatorname{VEC}_G(X_P, Q)_0$ contains a space isomorphic to \mathbb{C}^p where p is a nonnegative integer such that $\operatorname{VEC}_G(P, Q) \cong \mathbb{C}^p$.

We give a couple of examples.

Example 3.1

Let $G = SL_2$. We use the same notation as in Example 2.1. Let $P = \mathfrak{sl}_2$ and $Q = \varphi_1^m$ for $m \ge 1$. Then $\mathcal{O}(\mathfrak{sl}_2)^G = \mathbb{C}[t]$ with an invariant polynomial t of degree 2 and $\operatorname{VEC}_G(\mathfrak{sl}_2, \varphi_1^m) \cong \mathbb{C}^p$ for $p = [\frac{(m-1)^2}{4}]$. Let X be a G-stable affine quadric $\{(x, v) \in \mathfrak{sl}_2 \oplus \mathbb{C} \mid t + v^2 = 1\}$. Then by Corollary 3.3,

Proposition 3.4. With the above notation, $\operatorname{VEC}_G(X, \varphi_1^m)_0$ contains \mathbb{C}^p for $p = [\frac{(m-1)^2}{4}]$.

REMARK It is known that $\operatorname{VEC}_G(\mathfrak{sl}_2 \oplus \mathbb{C}, \varphi_1^m)_0 \cong \mathbb{C}[v]^p$ by [16].

Example 3.2

Let $G = G_1 \times G_2$, $P = P_1 \oplus P_2$, and $Q = Q_1 \oplus Q_2$ as in Example 2.2. Let $\mathcal{O}(P_1)^{G_1} = \mathbb{C}[u_1]$ and $\mathcal{O}(P_2)^{G_2} = \mathbb{C}[u_2]$ where u_i is a G_i -invariant homogeneous polynomial on P_i . Then $P//G \cong \mathbb{A}^2 = \operatorname{Spec} \mathbb{C}[u_1, u_2]$ and the complement of the principal stratum is defined by $u_1u_2 = 0$. We define for $d \geq 2$

$$X_d := \{ (x_1, x_2, v) \in P_1 \oplus P_2 \oplus \mathbb{C} \mid u_1(x_1)u_2(x_2) + v^d = 1 \}.$$

Then by the remark of Theorem 2.7 and Theorem 3.2,

Proposition 3.5. Under the notation and the assumptions in Theorem 2.7, $\operatorname{VEC}_G(X_d, Q_1 \oplus Q_2)_0$ contains an infinite dimensional space if $p_1 + p_2 > 0$.

Example 3.3

Let $G = SL_3$ and $P = \mathfrak{sl}_3$ with adjoint action. Then $P//G \cong \mathbb{A}^2$ and the complement of the principal stratum in P//G is defined by an invariant homogeneous polynomial f of degree 6. For $d \ge 2$, define

$$X_d = \{ (x, v) \in \mathfrak{sl}_3 \oplus \mathbb{C} \mid f + v^d = 1 \}.$$

It is known that $\operatorname{VEC}_G(\mathfrak{sl}_3, \mathfrak{sl}_3)_0$ contains a space isomorphic to $\Omega^1_{\mathbb{C}}$ which is the module of Kähler differentials of \mathbb{C} over \mathbb{Q} [17]. Hence we have by Theorem 3.2

Proposition 3.6. $\operatorname{VEC}_G(X_d, \mathfrak{sl}_3)_0$ contains an uncountably-infinite dimensional space.

18

References

- H. Bass, S. Haboush, Some equivariant K-theory of affine algebraic group actions, Comm. in Algebra 15 (1987), 181–217
- [2] H. Bass, S. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc 292 (1985), 463–482.
- M. Doebeli, Linear models for reductive group actions on affine quardrics, Bull. Soc. France 122 (1994), 505–531
- [4] M. Doebeli, Reductive group actions on affine quardrics with 1dimensional quotient: linearization when a linear model exits, Trans. Groups 1 (1996), 187–214
- [5] J. Gubeladze, Anderson's conjecture and the maximal monoid class over which projective modules are free, Math. U.S.S.R. Sbornik 63 (1988), 165–180
- [6] F. Knop, Nichitlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217–220
- [7] H. Kraft, G-vector bundles and the linearization problem in "Group actions and invariant theory" CMS Conference Proceedings, 10 (1989) 111– 123
- [8] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik D1, Vieweg Verlag, Braunschweig, (1984)
- [9] H. Kraft, Algebraic automorphisms of affine space in "Topological methods in algebraic transformation groups" Progress in Math. 80, Birkhäuser (1989)
- [10] H. Kraft, Challenging problems on affine n-space, Séminaire Bourbaki, Vol. 1994/95, Asterisque No. 237 (1996) Exp. no. 802, 5, 295–317
- [11] H. Kraft, G. Schwarz, Reductive group actions with one-dimensional quotient, I.H.E.S Publ. Math. 76 (1992), 1–97
- [12] D. Luna, Slice etales, Bull.Soc.Math.France, Memoire 33 (1973), 81–105
- [13] D. Luna, Adhérences d'orbite et invariants, Invent.Math. 29 (1975), 231– 238
- [14] D. Luna, R. Richardson, A generalization of the Chevalley restriction theorem, Duke. Math. J. 46 (1979), 487–496
- [15] K. Masuda, Moduli of equivariant algebraic vector bundles over affine cones with one-dimensional quotient, Osaka J. Math. 32 (1995), 1065– 1085.
- [16] K. Masuda, Moduli of equivariant algebraic vector bundles over a product of affine varieties, Duke Math. J. 88 (1997), 181–199
- [17] K. Masuda, Equivariant algebraic vector bundles over the adjoint SL_3 -module, preprint
- [18] M. Masuda, T. Petrie, Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687–714.
- [19] M. Masuda, L. Moser-Jauslin, T. Petrie, The equivariant Serre problem for abelian groups, Topology 35 (1996), 329–334
- [20] M. Masuda, L. Moser-Jauslin, T. Petrie, Invariants of equivariant algebraic vector bundles and inequalities for dominant weights, Topology 37 (1998), 161–177
- [21] K. Mederer, Moduli of G-equivariant vector bundles, Ph.D thesis, Brandeis University, 1995.

- [22] D. Quillen, Projective modules over polynomial rings, Invent. Math., 36 (1976), 167–171.
- [23] G. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris, 33 (1989), 89–94.
- [24] G.W. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1–12.
- [25] A. Suslin, Projective modules over a polynomial ring, Dokl. Akad. Nauk SSSR, 26 (1976) (=Soviet Math. Doklady, 17 (1976), 1160–1164).

DEPARTMENT OF MATHEMATICS, HIMEJI INSTITUTE OF TECHNOLOGY, 2167 SHOSHA, HIMEJI 671-2201, JAPAN

E-mail address: kayo@sci.himeji-tech.ac.jp