CERTAIN MODULI OF ALGEBRAIC G-VECTOR
BUNDLES OVER AFFINE G-VARIETIES

KAYO MASUDA

ABSTRACT. Let G be a reductive complex algebraic group and P
a complex G-module with algebraic quotient of dimension > 1.
We construct a map from a certain moduli space of algebraic G-
vector bundles over P to a C-module possibly of infinite dimension,
which is an isomorphism under some conditions. We also show non-
triviality of moduli of algebraic G-vector bundles over a G-stable
affine hypersurface of some type. In particular, we show that the
moduli space of algebraic G-vector bundles over a G-stable affine
quadric with fixpoints and one-dimensional quotient contains CP.

INTRODUCTION AND RESULTS

Let GG be a reductive algebraic group defined over the ground field
C of complex numbers. One of the most important problems in the
theory of algebraic group action is to understand algebraic G-actions
on affine space A". The following problem is fundamental;

Linearization Problem
Is every action of G on A" linearizable, i.e., conjugate to a linear
action under polynomial automorphisms of A™?

In 1989, Schwarz [23] presented the first examples of non-linearizable
actions on affine space. In fact, he first showed that there exist non-
trivial algebraic G-vector bundles over GG-modules, and the non-lineari
zable actions appear on the total spaces of non-trivial algebraic G-
vector bundles he found. An algebraic G-vector bundle E over an
affine G-variety X is an algebraic vector bundle p : E — X together
with a G-action on F such that p is G-equivariant and the action on
the fibers is linear. By definition, every fiber over the fixpoint locus
X% is a G-module. An algebraic G-vector bundle is called trivial if
it is isomorphic to a G-vector bundle of the form X x ) — X for a
G-module . When the base space is a G-module, if forgetting the G-
action, the total space FE is an affine space by the affirmative solution to
the Serre Conjecture by Quillen [22] and Suslin [25]. So, the G-action
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on the total space of a non-trivial G-vector bundle over a G-module is
a candidate for a non-linearizable action on affine space. In fact, there
are some criteria for the G-action on E being non-linearizable ([1],[7],
[18]). So far, all known examples of non-linearizable action are obtained
from non-trivial algebraic G-vector bundles. For an abelian G, at this
point, there are no counterexamples to the Linearization Problem; for,
by Masuda-Moser-Petrie [19], every G-vector bundle over a G-module
is trivial when G is abelian. The key point of their proof is to show
that one can reduce triviality of a G-vector bundle over a G-module P
to triviality of a vector bundle over the algebraic quotient space P//G
(=the spectrum of the ring of G-invariant polynomials on P). Since G
is abelian, P//G is a normal affine toric variety, and triviality of a vector
bundle over a normal affine toric variety was obtained by Gubeladze
[5]. We refer to Kraft [10] for recent topics in affine algebraic geometry
and algebraic group action related to the Linearization Problem.

In this article, we study algebraic G-vector bundles over affine G-
varieties X, especially in the case that X is a G-module. Throughout
this article, we assume that X is irreducible and smooth and that
X% is non-empty. We denote by VECq(X, Q) the set of equivariant
isomorphism classes of algebraic G-vector bundles over X such that
every fiber over X¢ is isomorphic to a G-module ). The isomorphism
class of a G-vector bundle £ — X is denoted by [E]. Suppose that
the base space is a G-module P. In this case, we have some infor-
mation on VECqs(P, Q) ([1], [2], [23], [11], [6], [18], [20]). By Bass-
Haboush [1], every G-vector bundle over P is stably trivial, i.e., there
exists a G-module S such that a Whitney sum E @ (P x S) is triv-
ial. For an abelian G, VECg(P, Q) is trivial, i.e., a trivial set consist-
ing of the trivial class [P x @] by Masuda-Moser-Petrie [19]. For a
non-abelian G, if the dimension of P//G is at most one, VEC4(P, Q)
is well-understood. When dim P//G = 0, VEC¢(P, Q) is trivial ([2],
[12]). When dim P//G = 1, however, VEC¢ (P, Q) can be non-trivial.
Schwarz ([23], cf. Kraft-Schwarz [11]) showed that VECq (P, Q) is iso-
morphic to an additive group CP for a nonnegative integer p, and the
non-trivial G-vector bundles found by Schwarz led to the first exam-
ples of non-linearizable actions on affine space, as is already mensioned
above. The result of Schwarz extends to the case where the base
space is a (not necessarily irreducible) G-stable affine cone X with
one-dimensional quotient, namely, it holds that VEC4(X, Q) = CP for
some p ([21],[15]). However, when dim P//G > 2, VEC¢(P, Q) is not
finite-dimensional any more. In fact, VECq(P®C™, Q) for a G-module
P with one-dimensional quotient and a trivial G-module C™ is isomor-
phic to the p times direct product of a polynomial ring Clyy, -+, ]
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where p is a nonnegative integer such that VECq(P,Q) = CP [16].
Furthermore, Mederer [21] presented examples of VECg(P, Q) which
contains an uncountably-infinite dimensional space for a finite group
G. Using Mederer’s result, it is shown that VECg (P, Q) can contain
an uncountably-infinite dimensional space also for a connected group
G [17]. However, VEC¢(X, Q) are not yet classified even when X is
a G-module P with dim P//G > 2 except some special cases ([6], cf.
[20]) and the cases mensioned above.

We denote by O(X) the C-algebra of regular functions on X and
by O(X)Y the subalgebra of G-invariants of O(X). By the finiteness
theorem of Hilbert, O(X) is finitely generated and the algebraic quo-
tient space X//G is defined to be Spec O(X)Y. Let nx : X — X//G
be the algebraic quotient map, that is, the morphism induced by the
inclusion O(X)¢ — O(X). Since X is irreducible, X//G is an irre-
ducible affine variety (cf. [8]). By Luna’s slice theorem [12], there
is a finite stratification of X//G = U;V; into locally closed subvari-
eties V; such that WX‘ﬂ;(l(%) 1 (Vi) — Vi is a G-fiber bundle (in
the étale topology) and the isotropy groups of closed orbits in 7" (V;)
are all conjugate to a fixed reductive subgroup H;. The unique open
dense stratum of X//G, which we denote by U, is called the principal
stratum and the corresponding isotropy group, which we denote by
H, is called a principal isotropy group. The principal isotropy group
H is the minimal group among H; up to conjugation. Suppose that
dim X//G > 1. We denote by VEC¢(X, Q)¢ the subset of VEC4 (X, Q)
consisting of elements which are trivial over 7' (U) and 7' (V) with
fiber @) where V := X//G — U. Though we do not know how to com-
pute VECq(X, @), it is not difficult to analyse VECq(X, Q) since
every [E] € VECg(X, Q) is determined by a transition function with
respect to two trivializations of E. In the case that X is a (not necessar-
ily irreducible) G-stable affine cone with dim X//G = 1, in particular,
a G-module with one-dimensional quotient, VECg(X x A™ Q) and
VECg(X x A™ Q)o coincide and we can compute VECq(X x A™, Q)
by analysing transition functions ([11], [16]). We assume that the ideal
of V is principal; for, if [E] € VECg(X, Q) is trivial over 75" (U) such
that ’/T;(l(V) is of codimension > 2, then FE is trivial. Our first result is
a classification of VECq(P, Q)o for a G-module P with dim P//G > 2.

Theorem 1. Let P be a G-module such that dim P//G > 2 and the
ideal of the complement of the principal stratum in P//G is principal.
Let Q) be a G-module. Then there exists a map

‘IIRQ . VECG(P, Q)O — Op(@)
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Here Cp(Q) is a C-module possibly of infinite dimension (cf. 2.3). If
Q is multiplicity free with respect to a principal isotropy group of P
and if P has generically closed orbits, then Vpq is an isomorphism.

Here, a G-module () is called “multiplicity free with respect to a
reductive subgroup H” if every irreducible H-module appears in @),
viewed as an H-module, with multiplicity at most one, and we say “P
has generically closed orbits” if every fiber of the quotient map 7p over
the principal stratum consists of a closed orbit.

For any G-module P with one-dimensional quotient and any (),
U pgem g in Theorem 1 is an isomorphism onto Cpgem (@) = (Clyy, - - -,
Ym])?, which coincides with the isomorphism obtained in [16].

Next, we investigate VEC (X, Q)0 for an affine quadric X. An affine
quadric of dimension N is an affine hypersurface X := {(zg, -+ ,zn) €
ANFL | SV 22 = 1}, We suppose that G is connected and acts on
an affine quadric X in such a way that the kernel of the action is
finite. Suppose also that X¢ is not empty and dim X//G = 1. Then
by Doebeli ([3] [4]), X is G-isomorphic to an affine quadric Xp :=
{(xz,v) € P® C | u(x) + v? = 1}, where P is an orthogonal G-module
with P//G = A' and u(z) € O(P)Y is an invariant quadratic form
generating O(P)¢. The G-action on Xp is the one induced by the linear
action on P. This time, however, the situation is rather different from
that in the case of G-modules. The fixpoint locus X§ consists of two
points {(O, £1)} where O is the origin of P, whereas the fixpoint locus
of a G-module is an affine space, hence connected. Though Xp//G
is isomorphic to A’ = Spec C[v], V of Xp//G consists of two points
{v = £1}, hence V' of Xp//G is disconnected. For a G-module, V is
connected since V' is defined by invariant homogeneous polynomials.
Thus we cannot apply methods in case of G-modules directly to a case
of an affine quadric. While, note that X is viewed as a G x (Z/2Z)-
variety, where Z/27Z acts on X = Xp C P@®C via a (non-trivial) linear
action on C. Then X/(Z/27Z) = P as a G-variety. It is easy to see
that the quotient map 7z, : X — X/(Z/27Z) = P induces an injection
75, + VECq(P,Q) — VECg(X, Q) (cf. [9]). Since VECq(P,Q) = CP
by the result of Schwarz, VECs(X, Q) contains a space isomorphic to
CP. We generalize this and obtain the following result.

Theorem 2. Let P be a G-module with diim P//G > 1. For f € O(P)¢
and an integer d > 2, let Xp(f,d) be a G-stable hypersurface {(x,v) €
P& C | f(x) +v! = 1}. Then, the quotient map 7wz, : Xp(f,d) —
Xp(f,d)/(Z]dZ) = P induces an injection for any G-module Q)

W%d : VECG(P, Q) — VECG(Xp(f, d), Q)
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Hence, if Up g in Theorem 1 is a surjection onto a non-trivial Cp(Q),

then VECq(Xp(f,d), Q) is non-trivial, too.

This article consists of three parts. In section 1, we investigate
VECq (X, Q) for an irreducible smooth affine G-variety X by analysing
transition functions of G-vector bundles. We have in mind as an X a
G-module. Our technique is based on the one established by Kraft-
Schwarz [11]. Using the results obtained in section 1, we prove The-
orem 1 in section 2. We compute VECq (P, Q)o explicitly in exam-
ples. In section 3, we ingestigate VEC¢ (X, Q)¢ in the case where V is
not connected, in particular, in the case where X is a G-stable affine
hypersurface represented by an affine quadric with fixpoints and one-
dimensional quotient.

The author expresses her gratitude to Professor M. Brion for sug-
gesting to observe algebraic G-vector bundles over affine quadrics. She
thanks also M. Miyanishi for his encouragement.

1. GENERAL RESULTS

Let GG be a reductive algebraic group and X an irreducible smooth
affine G-variety. We assume that the dimension of Y := X//G is greater
than 0 and the ideal of V' =Y —U is principal, where U is the principal
stratum of Y. Let f € O(Y) = O(X)% be a generator of the ideal
of V. We assume also that X© is non-empty, connected and X is
irreducible where H is a principal isotropy group of X. The object we
have in mind as an X is a G-module. We will investigate VEC (X, Q)
for a G-module Q.

Lemma 1.1. Let [E] € VEC¢(X,Q)o. Then E is trivial over X, :=
{z € X | h(x) # 0} where h is an element of O(Y') such that h — 1 is
contained in the ideal (f).

Proof. Since E|7r)_(1(v) is, by the assumption, isomorphic to a trivial
bundle, it follows from the Equivariant Nakayama Lemma [2] that the
trivialization F |7r;(1 W) — 7% (V) x Q extends to a trivialization over a

G-stable open neighborhood U of 1x' (V). Let V be the complement of

Uin X. Since V is a G-stable closed set, wx (V) is closed in Y [8]. Note
that V Ny (V) = 0 since 75 (V) NV = 0. Let 3 € O(Y) be the ideal
which defines x (V). Then (f) +3 3 1 since V N 7x (V) = §. Hence
there exists an h € J such that h — 1 € (f). Since Y, C Y — 7x(V),

Xp, = nx' (Ya) C 1’ (Y — 7x(V)) € U. Thus F is trivial over X;,. O
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We define an affine scheme Y = Spec A by
A ={hy/hy|h1, hy € OY),hy — 1 € (f)}.

Set ?f =Y Xy )7, X =Y xy X and Xf = }N/f Xy X. The group
of morphisms from X to M := GL(Q) is denoted by Mor (X, M) or
M(X). The group G acts on M by conjugation via the represen-
tation p : G — GL(Q). The action of G on M(X) is defined by
(9 1)(z) = p(g)u(g'z)p(g)~" for g € G,z € X, p € M(X). We
denote the group of G-invariants of M (X) by Mor (X, M) or M(X)¢.
Let [E] € VECg(X,@)o. Then by the definition of VECs (X, Q)o, E
has a trivialization over 7' (U) = X, and by Lemma 1.1 E has a
trivialization also over an open neighborhood of W;(I(V), ie., X, for
some h € O(Y) such that h —1 € (f). Hence, assigning to [E] the
transition function with respect to the trivializations F|x, = X; x Q
and F|x, = X, x @, we have a bijection to a double coset (cf. [15,
3.4])
VECG(X, Q)0 = M(X/)\M(Xy)®M(X)°.

Since X# is irreducible, the inclusion X < X induces an isomor-
phism X# //N(H) = X//G where N(H) is the normalizer of H in G
[14]. Set W := N(H)/H. When we consider X as a W-variety, we de-
note it by B. Note that the principal isotropy group of B is trivial. Let
B: M(X)Y — L(B)" be the restriction map where L := GL(Q)?. We
say X has generically closed orbitsif 7 (€) for any & € Y} consists of a
closed orbit, i.e. 75 () = G/H. When X has generically closed orbits,
GX{ = X;. Hence M(X;)“ = Mor (GX{,GL(Q))“ = L(By)", ie.,
B is an isomorphsim over Y;. The group homomorphism (3 induces a
map

VECG(X,Q)o = M(Xp)“\M(X;)9/M(X)"
—  L(B)"\L(Bp)" /B(M (X)), (1)

which is an isomorphism when X has generically closed orbits.
We decompose () as an H-module

Q = D n:Q;

where (); are pairwise non-isomorphic irreducible H-modules and n; is
the multiplicity of @);. We call QQ multiplicity free with respect to H if
n; = 1 for all 7. It follows from Schur’s lemma that

q

L=GL@Q" =[] GLn,.

i=1
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Let T be the center of L. Then T is W-stable and 7" = (C*)?. When
() is multiplicity free with respect to H, L =T. Look at the action of
W on T. Note that ¢ € N(H) permutes the H-isotypic components
n;Q; (i =1,---,q). Since w € W acts on L by conjugation by p(g)
where g € N(H) is a representative of w, W acts on T" = (C*)? by
permuting C*s. Hence W acts on T as a subgroup of the symmetric
group S, via a continuous homomorphism from W to S,. Thus the
connected component Wy of W containing the identity acts trivially
on T and the action of W on T reduces to the action of W/W,. The
determinant map on each factor GL,, of L induces a homomorphism
of groups; 7 : L(B)" — T(B)". The homomorphism 7 induces a map

L(B)"\L(B)Y [B(M (X)) — T(B)™ (T(B)™ (T 0 B)M(X)9). (2)
By (1) and (2), we have

Lemma 1.2. There exists a map
¥x.q : VECG(X, Q) — T(Bp)" /(T(Bp)™ (r 0 B)M(X)“).

If Q) is multiplicity free with respect to H and X has generically closed
orbits, then Vx g is an isomorphism.

REMARKS 1. Fort € O(Y), let VECs(X, Q;t) be the subset of
VECq(X, Q) consisting of elements [E] such that E is trivial over
7' (Y;) and its complement. Then one obtains, in a similar way to
the above, a map from VECq(X, @Q;t) to a quotient group.

2. When H is trivial, M = L and the target residue group in
Lemma 1.2 is O(Y;)*/O(Y;)*r(M(X)%), where O(Y})* (resp. O(Y})*)
denotes the group of invertible elements in O(Y}) (resp. O(Yy)). If
Q contains a trivial G-module, then 7 = det : M(X)% — O(Y)*
is surjective. Furthermore, if Pic Y = (0), then the residue group
O(Y;)*/O(Yy)*T(M (X)) becomes trivial (cf. proof of Lemma 1.3).
Thus when H is trivial and Pic Y = (0) (e.g. X is a G-module with a
trivial principal isotropy group), 1x o becomes trivial if () contains a
trivial G-module.

We will analyse the target residue group in Lemma 1.2. We pose the
following conditions:

(I) V is connected and O(r5'(V))* = C*.
(IT) The restriction O(75' (V))* — O(X)* is an isomorphism.
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It follows from the conditions (I) and (II) that the restriction of 75! (V)
onto X% induces an isomorphism T'(7z (V)W = TW(X%) =2 TW. Set

T(B) = {n€T(B)| pulyro) =1}
T(B)Y = T(B),nT(B)Y

where [ is the constant map to the identity element of 7. Note that
T(B) = T(BhT(ng' (V) = T(B)T.

Lemma 1.3. Suppose that the conditions (1) and (II) are satisfied. If
Pic B = (0) and O(B)* = C*, then

T(By)" =T(B)VT(B){"

Proof. We first claim that T(Bf) — T(By)T(B),. Since T(B) =
T(B)\T, it suffices to prove T(B;) = T(B;)T(B). Note that every
element of T'(By) is considered as a transition function of a Whitney
sum of line bundles over B with respect to trivializations over By and
an open neighborhood of 75" (V). Since Pic B = (0), every line bundle
over B is trivial. This implies that T(B;) = T(B;)T(B). Let u €
T(B)W. Write p = jufi with i € T(By) and i € T(B);. Note that
T(Bf) N T(B), = T(B), = {I} since O(B)* = C*. Since p is W-
invariant, we have =" (w - i) = ji(w - i)~ € T(Bf) NT(B), = {I} for
every w € W. Hence ;1 and fi are W-invariant, and the assertion is
thus verified. O

Set
M(X)Y = {p € MX)" | plxe = 1}.
Note that (70 8)(M(X)S) c T(B)! under the conditions (I) and (II).

Lemma 1.4. Suppose that the assumptions in Lemma 1.3 are satisfied.
If there exists a G-equivariant morphismr : X — X such that roi =
id where i : X9 < X is the inclusion, then there exists an isomorphism

T(B)" /(T(By)" (10 HM(X)) = T(B)Y /(1 0 B)(M(X)).

Proof. We claim that (7 o B)M(X)¢ C (7 o B)(M(X)$)TV. In
fact, let u € M(X)S and po := plxe € MY (X). Then (10 B)uo €
TV(XE) = TW. Let p: MY(XY) — M(X)Y be the group homomor-
phism induced by r. Then fi := p(uo) € M(X) satisfies fi|xe = po.
Since O(B)* = C*, (rof)ji € T". The claim follows from that 1 = /i
where p1; = pfi=t € M(X)S. Since (toB)M(X)E C (108)(M(X)F)TV
and T(B;)W NT(B)Y = T(B)\V = {I}, we obtain by Lemma 1.3 the
desired isomorphism. O
We proceed to analyse the residue group T'(B)Y /(1 o B)(M(X)%).
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Let Y be the completion of Y along V' and let B=Y Xy B and
X = Y xy X. Note that an element of M(X)C (resp. T(B)") is
considered as an invertible matrix (resp. an invertible diagonal matrix)
with entries in O(X) (resp. O(B)) invariant under the G-action (resp.
the W-action). For r > 1, we define

T(B)) = {peT(B) |p=1 modb"O(B)}
M(X)¢ = {peMX)|p=1 moda"O(X)},

where a C O(X) denotes the ideal of X¢ C X and b C O(B) denotes

the ideal of 75 (V), i.e. b= \/(f). We define L(B)Y, similarly. Then
there exists a canonical map

T(B)Y /(70 B)(M(X)T) — T(B)Y /(7 0 B)(M(X)T).

We will show that this canonical map is a surjection when X has gener-
ically closed orbits. First, we prove

Lemma 1.5. For everyr > 1,
T(B)Y =T(B)YT(B)"

Proof. It is clear that T(B)YW > T(B)WT(B)YW. We show the op-
posite inclusion. Let p = (p1 (), ..., pg(x)) € T(B)Y where p;(z) €
O(B) and 1; = 1 mod bO(B). Recall that W acts on T = (C*)? by
permuting C*s. Since the identity component Wy acts trivially on T',

pi(z) € O(B)Wo for 1 <i < q. Let y(z) € O(B)"° be a function such
that pi(z) = fi;(z) mod b"O(B). Since p; = 1 mod bO(B), fi; = 1
mod b. Define 11 := (fi1(z), ..., fig(x)) and i := [, ey, w - fi- Then
fieT(B)Y and i'pe T(B)V. O

Let m, [ and t be the Lie algebras of M, L and T', respectively. Then
m=End Q, [ = End (Q)# = ®!_,M,, and t = C? where M, denotes
an (n; x n;)-matrix. Let 3, : m(X)¥ — [(B)" be the homomorphism
of O(Y')-modules induced by the restriction of X onto B. Similarly, let
7. : (B)W — t(B)" be the homomorphism induced by the trace map
on each M, of [~ @&  M,.. Note that

t(B)" =~ (0(B) ®c t)", (B)Y = (0O(B) ®c )"
and m(X)¢ 2 (O(X) @cm)°,
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which are all finitely generated modules over O(Y') (cf. [8, I1,3.2]). For
a positive integer r, we define

t(B)Y =" ®ct),

T

(B)) = (b"&cDY,

T

m(X)¢ = (a" ®cm),

T

which are also finitely generated modules over O(Y'). We define t(B)"
[(B)Y and m(X), similarly. The exponentials exp : [ — L and exp :
m — M induce isomorphisms (with inverse log) [(B)"W 5 L(B)" and
m(X)¢ 5 M(X)% (Here, the latter exponential series converges in the

T

a-adic topology).

Lemma 1.6. Suppose that X has generically closed orbits. Then there
exists an integer ro such that B.m(X)¢ D (B)Y and B(M(X)§) D
L(B)Y for all v > ro.

Proof. Let {C;} and {A;} be generating systems of [(B)}Y and m(X){
over O(Y), respectively. Since X has generically closed orbits, [, :
m(X;)¢ — (By)W is an isomorphism. Thus C; is written as C; =
Bu(>_;cijAj) where ¢i; € O(Y)y. Let e;; > 0 be the minimal in-
teger such that f%c¢; € O(Y) and d be the minimal integer such
that b C (f). Put e := max; {e;;} and ro := de + 1. Then for
r > 1, any element of [(B)Y is of the form f¢C where C' € [(B)}".
Since C' = ). ¢;C; for ¢; € O(Y) and fec;; € O(Y) for every i, j, so
feC e pam(X)§. Hence B.m(X)Y D I(B)Y. The second inclusion
follows from B,m(X)§ D I(B)W via the exponential maps. O

REMARK In order to prove Lemma 1.6, it is sufficient to hold that
By : m(X;) — [(Bf)W is surjective.

Since 7, : [(B)Y — t(B)W is the trace map, 7, is surjective. Hence,
via the exponential maps, T'(B)" = 7(L(B)W). Under the assumption
in Lemma 1.6, T(B)Y = 7(L(B)Y) C (103)(M(X)$) for a sufficiently

large r. By this together with Lemma 1.5, we obtain

Lemma 1.7. Suppose that X has generically closed orbits. Then the
canonical map

T(B)Y /(r o B)(M(X)F) — T(B)Y /(7 0 B)(M(X)Y)

15 a surjection. Furthermore, if Q) s multiplicity free with respect to

H, then L(B)W /3(M(X)S) — L(B)W /B(M(X)S) is an isomorphism.

Proof. The first assertion is clear from the above statement. As
for the second assertion, it suffices to show that the canonical map
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is injective. We will show that B(M(X X)) N LB ¢ B(M(X)¢ )
Let D € M(X)¢ and 5(D) € B(M(X)§ )N L(B)Y. We regard D
as an element of m(X)¢ and show that D € m(X)%. Since 8(D) €
L(B)VV is translated as 5, (D D) € [(B)V, it follows from Lemma 1.6 that

frB.(D) = B.(D) for a sufficiently large rand D € m(X)C. Since X
has generically closed orbits, 3. : m(X;)¢ — [(B;)" is an isomorphism,

s0, B : m(X)Y — [(B)Y is an injection. Hence f, : m(X)G — [(B)W
is also an injection. Thus f"D = D. This implies that D € m(X)C.
Hence D € M (X)$ and the assertion follows. 0J

The logarithmic map induces an isomorphism

T(B)Y /(1o B)Y(M(X)T) = tB)Y /r.Bm(X)f.
We set
Cx(Q) = B) [rBm(X)Y.
When Q is multiplicity free with respect to H, C'x(Q) = [(B)¥V /B,m(X)E.
By the results obtained so far, we have

Theorem 1.8. There exists a map

T(B)Y /(70 B)(M(X)]) = t(B)Y /rpm(X){ = Cx(Q),
which 1s an isomorphism when () is multiplicity free with respect to H
and X has generically closed orbits.

2. G-VECTOR BUNDLES OVER (G-MODULES

In this section, we consider the case where the base space X is a
G-module P and give a proof of Theorem 1 in the introduction. Let
P be a G-module such that Y = P//G is of dimension > 1 and the
ideal of V' =Y — U is principal. Note that the ideal of V' is generated
by an invariant homogeneous polynomial f € O(P)% and that V is
connected. Let H be a principal isotropy group of P and let B = P,

Lemma 2.1. (1) Pic B = (0) and O(B)* = O(P%)* = C*.
(2) 75" (V) is a connected affine cone and O(n5'(V))* = C*.

Proof. (1) The assertion follows from the fact that B and PY are
affine spaces.

(2) One easily sees that 753" (V) is a connected affine cone. Indeed,
75 (V) is a union of irreducible reduced affine cones U;Spec R pass-
ing through the origin. Each affine cone Spec RY) has a positively
graded integral domain RV) = @kzoR;(gj ) as the coordinate ring such
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that R(()j ) = C. Since (RW)* = C* for each j, the standard argument
in commutative algebras shows that O(r5'(V))* = C*. O

The projection p : P — P is G-equivariant and has the property
poi = id for the inclusion i : P¢ < P. By this fact and the results
obtained so far, we obtain a map Vp¢ for a G-module Q;
Up, ~

VECG(P,Q)o = T(B)Y /(T(B)Y (10 B)M(P)®) (Lemma 1.2)
~  T(B)Y/(rop)(M(P)?) (Lemmas 1.4,2.1)
— (B /rAm(P)¢ =Cp(Q)  (Theorem 1.8).

Hence we have

Theorem 2.2. Let P be a G-module as above and let () be a G-module.
There is a map

B
B

Upo: VECq(P, Q) — Cp(Q)

which is an isomorphism when () is multiplicity free with respect to H
and P has generically closed orbits.

REMARKS 1. Let P be any G-module and let ¢ be a G-invariant
homogeneous polynomial on P. We use the notation in the remark of
Lemma 1.2. By the construction similar to the above, one obtains a
map

Upq(t) : VECG(P, Q1) = UB)Y [r.Bum(P)f =: Cri(Q)
where the completion is (¢)-adic completion. One can show that W p (%)
is surjective for any G-module @ if one takes t € O(Y') so that Y; is
contained in the principal stratum of GP (cf. [15, 1.1}, [2, 6.5]).

2. When H is trivial and () contains a trivial G-module, 9pq is
trivial (remark of Lemma 1.2), hence Vp is also trivial.

This completes the proof of Theorem 1 in the introduction except
the statement on Cp(@). Note that Theorem 1 holds also in the case
dim P//G = 1. When dim P//G = 1, it is known that P//G = A!
and VECg(P @ C™, Q) = VECg(P & C™,Q)o for m > 0 ([11], [16]).
Suppose that dim P//G = 1. Then Cp(Q) is a finite C-module by the
formula (3) below (cf. Lemma 2.3) and Cpecem(Q) = (Clyr, -+, Ym))P
by easy calculation. By comparing ¥pgcem o with the isomorphism
VECg(P®C™ Q) = (Clyi, -, Ym))? given in [16] (cf. [11]), one sees
that ¥pgem ¢ for m > 0 is an isomorphism for any P and Q.

Now, we look at C'p(Q)) more closely. A G-module P is called cofree
if O(P) is a free module over O(P)%. It is known that cofree modules
are coregular, i.e., P//G is isomorphic to affine space (cf. [24]). Fur-
thermore, if P is a cofree N(H)-module, then P is a cofree G-module
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[24]. We suppose that B is a cofree W-module and make some obeser-
vation on Cp(Q). Then, O(Y') is isomorphic to a polynomial ring and
m(P) and t(B)" are finite free modules over O(Y'). Since b is princi-
pal, t(B)}V is also a finite free module over O(Y'). The rank of t(B)
is the same as the rank of t(B)", which is equal to ¢ = dimt [24].
Note that O(Y), m(P)“ and t(B)" inherit a grading on O(P). Since a
and b are homogeneous ideals, m(P)$ and t(B)!V are also graded. Let
{A;1 < i < £} be a homogeneous generating system of m(P){ over
O(Y) and let {C;;1 < i < g} be a homogeneous basis of t(B)}" over
O(Y). Then

q
T*ﬁ*AZ = Z&ijcj for A5 € O(Y)
j=1

Noting that t(B)Y = ¢(B)IV ®o(v) O(Y) and m(P)¢ = m(P)¢ Ro(y)
oY),

Cp(Q) = &]_,0(Y)/a; (3)

where a; = a;0(Y) and a; is the ideal in O(Y) generated by {a;;;1 <
i <(}. Let e; = deg C; and a; = deg A;. Since 7, and 3, preserve the
grading, deg a;; = a; — ¢; if a;; # 0. The following is easily proved.

Lemma 2.3. Suppose that B is cofree. If there is some j such that
a; > e; for any i, then Cp(Q) is non-trivial. If there exists some j such
that ht a; < dimY’, then Cp(Q) is an infinite dimensional C-module.

REMARK The module Cp(Q) can be of infinite dimension, but of
countably-infinite dimension.

This completes the proof of Theorem 1. By Theorem 2.2 and Lemma
2.3, we have

Corollary 2.4. Suppose that Wpg in Theorem 2.2 is surjective and
B is cofree. If a; > e; for some j and any i, then VECq(P,Q)o
is non-triwial. If there ewists some j such that ht a; < dimY’, then
VECq (P, Q)o contains an infinite dimensional space.

We give a couple of examples.
Example 2.1

Let G = SL, (n > 2) and let P be the Lie algebra sl,, with adjoint
action. We denote a maximal torus of G by T, and its Lie algebra by t,,.
Then the principal isotropy group of sl, is T, and B = (sl,)™ = t,.
W = N(T,)/T, is the Weyl group which is isomorphic to S,. The
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algebraic quotient space Y is s, //G = t,,//W = A" and V is of codi-
mension one. Hence the ideal of V' is generated by a single homoge-
neous polynomial f € O(Y) = C[ty,--- ,t,-1]. Since the general fiber
of the quotient map of sl, is isomorphic to G/T,, sl, has generically
closed orbits. Let ¢; be the standard representation space of G and
o (m > 1) be the symmetric tensor product S™(p;). Let Q = o7
Then @ is multiplicity free with respect to T,,. Hence L =T = (C*)?

—1
for g =dimQ = ntm .
m

Consider the case n = 2. Then G = SL, and the quotient map
is given by the determinant map ¢ : P = sl — sly//G = A'. Hence
O(Y) = C[t] and ¢ is, as an element of O(B)Y, written as t = z* with a
coordinate  on B =ty =2 C. Note that 7o =2 C* and W = Z/27. The
stratification of sly//G = Al consists of two strata, {0} and A' — {0}.
Hence V = {0} and f =t. Let R,, be the SLs-module of binary forms
of degree m. Then P = sly &2 Ry and (Q = R,,. As a Ty, = C*-module,
Q = B y@m-2 wWhere (,,_9 is an irreducible T5-module with weight
m—2l. As a G-module, m = End R, = (R,,,)*®R,, = &]",Ry. Hence,

m(sl)? = @ (O(R2) ® Ry)” = &M,
and

[(t2)" = @2 (O(t) © Ryp)" = &% N,

where M; := (O(Ry) ® Ry)® and N, := (O(ty) ® R3?)". The modules
M; and N; are free over O(Y) = C[t] of rank one. In fact, since M, =
Mor (R, Rzz)G, the homogeneous generator A; of M; is given by the [-th
power map and the homogeneous generator C; of N; = (Clz]® R3?)" is
given by 1®e¢; for [ even, z ®e¢; for [ odd, where ¢; is a base of Rgf =~ C.
Hence m(sly) and [(ty)" are free modules over C[t] of rank m+1. Note
that deg A; = [ and deg C; is 0 for [ even, 1 for [ odd. Since C[t] is a
principal ideal domain, m(sly)¢ is also free over C[t]. A homogeneous
basis of m(sly)¢ over C[t] is {tAg, A;;1 = 1,2,---,m} since sl,% =
{O}. Since b = /(t) = (z), a homogeneous basis of [(t5)}" over
(C[t] is {tco,tCQl, Ogl_l;l = 1, ce ,m/2} for m even, {tOQl, Ogl+1;l =
0,1,---,[m/2]} for m odd. Here, [a] denotes the largest integer not-
exceeding a. Since 3,(4;) = tI/2C),

Ca (#1") 2 1(t)Y /Bam(sly){ = C

where p = > " [(1—1)/2] = [(m—1)?/4]. Since it follows from sl //G =
A! that VECg(sly, ") = VECg(sly, 7)o, we have by Theorem 2.2

Proposition 2.5. [23] Let G = SLy. Then
VECq(sly, 1) = C” for p=|[(m—1)*/4].
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Next, consider the case that n > 3. As a G-module,
m = End 7" = (¢1")* @ " = @8l

where sl is the irreducible component of the highest weight in S'(sl,,).
Hence

m(sl,)¢ = @, (O(sl,) @ sl)¢ = @ M,
where M; := (O(sl,,) ® s[,)¢. Similarly,

()" = @ (O(t) ® (sL,) ™) = BN,

where N; := (O(t,) ® (sl)T )W It is known that t,, is cofree (cf. [24]).
Thus M; and N, hence m(sl,)¢ and [(t,)", are finite free modules over
O(Y). Since O(sl,) & By>05%(sl,,), M; = @d>0(Sd(s[ )@ sl )E. Hence
every homogeneous generator of M; has degree > [. The homomor-
phism 3, : m(s[,)¢ — [(t,)" maps M; to N;. Set M(1); := (a ® sl
and N(1); := (b® (sl')™)". Then m(sl,)§ = @;nOM(ml and [(t,)VV =
@y N(1);. The homomorphism 3, maps M(1); to N(1);. Let {4;} be
a homogeneous generating system of M (1),, over O(Y) and {C;} be a
homogenous basis of N(1),, over O(Y). Then B.(4;) = >_; a;;C; for
a;; € O(Y). Since deg A; > m for all i and deg C; < |W|+ deg f [8,
I1,3.6], deg a;; > 0 if m is sufficiently large. Hence N(1),,/8.(M(1),,)
is non-trivial for m > 0. We have by Theorem 2.2;

Proposition 2.6. (cf. [6]) Let n > 3 and G = SL,. Form > 1,
VECq(sl,, 7)o = Co, (©7"). In particular, VECg(sl,, ©7")o is non-
trivial for a sufficiently large m.

REMARK In order to show that Cy, (¢}") contains an infinite di-
mensional module for n > 3, we need to prove that the height of the
ideal a; generated by a;; € O(Y) (cf. Lemma 2.3) is smaller than n—1.
However, to calculate generators of N(1); and M(1); by hand is a hard
job.

Next is a new example of VEC4(P, @), containg an infinite dimen-
sional space.

Example 2.2

Let P = P, ® P, and G = (G; X G5 where P, is a G;-module with
one-dimensional quotient for ¢ = 1,2. Then P is a G-module with
trivial G-actions on P; for ¢ # j and P//G = A%, A principal isotropy
group H of P is Hy x Hy where H; is a principal isotropy group of P;.
The complement of the principal stratum in P//G = A? is a union of
two lines. Let @; (i = 1,2) be a G;-module. By the statement below
Theorem 2.2, there are isomorphisms VECg, (P, Q;) = Cp,(Q;) = CPi
fori =1,2. Let Q = Q1 ® Q2. Then @ is multiplicity free with respect
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to H when @); is multiplicity free with respect to H; for « = 1,2 and
dim(QP @ QM?) < 1. In this case, Cp(Q) is easily computed and
isomorphic to Clu]P? @ Clus]P* where O(P;)%t = Cluy] and O(P,)%? =
Clus). By Theorem 2.2, we have with the above notation

Theorem 2.7. Suppose that Q; is multiplicity free with respect to H;
fori=1,2 and dim(Q\" ® Q5) < 1. Then there is a map

VECq(P, & Py, Q1 @ Q2)0 — Clug|P? & Clug)??,

which is an isomorphism when P; has generically closed orbits for i =
1,2.

REMARK One can show that the map in Theorem 2.7 is surjective
for any @ and any P; by using the fact that Z; = GP/' for Z := GPH
when O(P)Y = C[f] (cf. [15, 1.1], the remark of Theorem 2.2).

Apply Theorem 2.7 to the case where G = SLy X SLy, P = sly ®sls,
and Q) = " @ ¢}. Since sl, has generically closed orbits and ¢7" is
multiplicity free with respect to a principal isotropy group of sly for
m > 1, we have

Theorem 2.8. Let G = SLy x SLy. Then
VECq (sl @ sla, 97" @ ¢})o = Clua '™ @ Clua]?™.
Here p(n) = [(n — 1)%/4] and either m or n is odd.

3. G-VECTOR BUNDLES OVER G X (Z/dZ)-VARIETIES

In this section, we consider in the case that V' is not connected. Such
a case occurs when X is a (-stable affine quadric with fixpoints and
one-dimensional quotient. As is remarked in the introduction, when
(G is connected, such an affine quadric X is G-isomorphic to an affine
quadric
Xp={(r,v) € POC|u(x) +0v*=1}
where P is an orthogonal G-module with P//G = A! and u(z) is an
invariant quadratic form on P such that O(P)¢ = C[u]. Recall that
Xp is viewed as a G x (Z/27Z)-variety. We generalize this situation. Let
P be anew a G-module as in section 2, i.e., P is a G-module such that
dim P//G > 1 and the ideal of the complement of the principal stratum
in P//G is generated by a homogeneous polynomial f € O(P)“. For
d > 2, define a G-stable hypersurface Xp(d) as follows;

Xp(d) ;== {(z,v) e PO C| f(z) +v? =1}
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Then the fixpoint locus Xp(d)® consists of d connected components.
The complement V' of the principal stratum in Xp(d)//G has d con-
nected components and each connected component of W;(Ilg( d)(V) con-
tains one connected component of Xp(d)“. A principal isotropy group
H of Xp(d) is a principal isotropy group of P. As in the case of
affine quadrics, Xp(d) has a Z/dZ-action induced by a (non-trivial)
linear action of Z/dZ on C. Hence Xp(d) is viewed as a G x (Z/dZ)-
variety. Then Xp(d)/(Z/dZ) is G-isomorphic to P. Let 7z, : Xp(d) —
Xp(d)/(Z/dZ) = P be the quotient by Z/dZ. Let [E] € VECs(P, Q)
for a G-module Q. Then 77 F is a G x (Z/dZ)-vector bundle over
Xp(d). Viewing 77 E as a G-vector bundle, we obtain a map

W%d : VECG(P, Q) - VECG(XP(d>, Q)
Since £ = 7, E/(Z/dZ) [9], we have
Lemma 3.1. The map 7y 1is injective.

Note that 7; maps VECq(P, Q) to VECa(Xp(d), Q)o. By Lemma
3.1 and Theorem 2.2, we obtain

Theorem 3.2. The map w7, induces an injection
VEC¢q (P, Q)o — VECq(Xp(d), Q)o-

Hence, if Up g in Theorem 2.2 is a surjection onto a non-trivial Cp(Q),

then VECq(Xp(d), Q)¢ is non-trivial.

If we take as an f in the definition of Xp(d) any G-invariant poly-
nomial on P, then we obtain Theorem 2 in the introduction.

REMARK Theorem 3.2 is generalized as follows. Let P; (i = 1,2
) be a Gj-module such that dim P;//G; > 1 and dim P,//Gs = 1. Let
t be a homogeneous generator of O(P)%. For f € O(P)%, define a
G x Go-stable hypersurface X (f) as follows:

X(f) ={(z1,22) e L@ By | fla1) +t(x2) = 1}
Then the quotient map 7g, : X(f) — X(f)//G2 = P, induces an
injection for a Gi-module @)

7o, VECe, (P1, Q) — VECq, (X(f), Q).

Recall that VECg(P,Q)o = VECg(P,Q) = CP when P has one-
dimensional quotient. Hence we have by Theorem 3.2

Corollary 3.3. Suppose that Xp is a G-stable affine quadric defined as
above. Then VECq(Xp, Q) contains a space isomorphic to CP where
p s a nonnegative integer such that VECg(P, Q) = CP.
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We give a couple of examples.
Example 3.1

Let G = SLy. We use the same notation as in Example 2.1. Let
P = sly and Q = ¢ for m > 1. Then O(sly) = C[t] with an invariant
polynomial ¢ of degree 2 and VEC(sls, ") = CP for p = [@] Let
X be a G-stable affine quadric {(z,v) € slo ®C | t +v? = 1}. Then by
Corollary 3.3,

Proposition 3.4. With the above notation, VECg(X, ¢1")o contains

Cr for p = [(m2),

REMARK It is known that VECg(sly @ C, p7*)o = C[v]? by [16].

Example 3.2

Let G = Gy % GQ, P = Pl@PQ, and Q = Ql@QQ as in Example 2.2.
Let O(P) = Clu;] and O(P,)% = Cluy] where u; is a Gj-invariant
homogeneous polynomial on P;. Then P//G = A? = Spec Cluy, us] and
the complement of the principal stratum is defined by ujus = 0. We
define for d > 2

Xd = {(1’1,[[’2,?}) € P1 D Pg @D C ’ Ul(l'l)UQ(.TQ) + 'Ud = 1}
Then by the remark of Theorem 2.7 and Theorem 3.2,

Proposition 3.5. Under the notation and the assumptions in Theorem
2.7, VECq (X4, Q1P Q2)o contains an infinite dimensional space if p1+
pa > 0.

Example 3.3

Let G = SL3 and P = sl3 with adjoint action. Then P//G = A?
and the complement of the principal stratum in P//G is defined by an
invariant homogeneous polynomial f of degree 6. For d > 2, define

Xd:{(x,v)65[369@|f—i—vd:1}.

It is known that VECg(sl3,sl3)o contains a space isomorphic to Q¢
which is the module of Kéhler differentials of C over Q [17]. Hence we
have by Theorem 3.2

Proposition 3.6. VECq(Xy, sl3)o contains an uncountably-infinite di-
mensional space.



MODULI OF ALGEBRAIC G-VECTOR BUNDLES 19

REFERENCES

[1] H. Bass, S. Haboush, Some equivariant K-theory of affine algebraic group
actions, Comm. in Algebra 15 (1987), 181-217

[2] H. Bass, S. Haboush, Linearizing certain reductive group actions, Trans.
Amer. Math. Soc 292 (1985), 463-482.

[3] M. Doebeli, Linear models for reductive group actions on affine quardrics,
Bull. Soc. France 122 (1994), 505-531

[4] M. Doebeli, Reductive group actions on affine quardrics with 1-
dimensional quotient: linearization when a linear model exits, Trans.
Groups 1 (1996), 187214

[5] J. Gubeladze, Anderson’s conjecture and the maximal monoid class over
which projective modules are free, Math. U.S.S.R. Sbornik 63 (1988),
165-180

[6] F. Knop, Nichitlinearisierbare Operationen halbeinfacher Gruppen auf
affinen Raumen, Invent. Math. 105 (1991), 217-220

[7] H. Kraft, G-vector bundles and the linearization problem in “Group ac-
tions and invariant theory” CMS Conference Proceedings, 10 (1989) 111
123

[8] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspecte der
Mathematik D1, Vieweg Verlag, Braunschweig, (1984)

[9] H. Kraft, Algebraic automorphisms of affine space in “Topological meth-
ods in algebraic transformation groups” Progress in Math. 80, Birkh&user
(1989)

[10] H. Kraft, Challenging problems on affine n-space, Séminaire Bourbaki,
Vol. 1994/95, Asterisque No. 237 (1996) Exp. no. 802, 5, 295-317

[11] H. Kraft, G. Schwarz, Reductive group actions with one-dimensional quo-
tient, LH.E.S Publ. Math. 76 (1992), 1-97

[12] D. Luna, Slice etales, Bull.Soc.Math.France, Memoire 33 (1973), 81-105

[13] D. Luna, Adhérences d’orbite et invariants, Invent.Math. 29 (1975), 231—
238

[14] D. Luna, R. Richardson, A generalization of the Chevalley restriction
theorem, Duke. Math. J. 46 (1979), 487-496

[15] K. Masuda, Moduli of equivariant algebraic vector bundles over affine
cones with one-dimensional quotient, Osaka J. Math. 32 (1995), 1065
1085.

[16] K. Masuda, Moduli of equivariant algebraic vector bundles over a product
of affine varieties, Duke Math. J. 88 (1997), 181-199

[17] K. Masuda, Equivariant algebraic vector bundles over the adjoint SLj-
module, preprint

[18] M. Masuda, T. Petrie, Stably trivial equivariant algebraic vector bundles,
J. Amer. Math. Soc. 8 (1995), 687-714.

[19] M. Masuda, L. Moser-Jauslin, T. Petrie, The equivariant Serre problem
for abelian groups, Topology 35 (1996), 329-334

[20] M. Masuda, L. Moser-Jauslin, T. Petrie, Invariants of equivariant alge-
braic vector bundles and inequalities for dominant weights, Topology 37
(1998), 161-177

[21] K. Mederer, Moduli of G-equivariant vector bundles, Ph.D thesis, Bran-
deis University, 1995.



20 KAYO MASUDA

[22] D. Quillen, Projective modules over polynomial rings, Invent. Math., 36
(1976), 167-171.

[23] G. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris, 33
(1989), 89-94.

[24] G.W. Schwarz, Representaions of simple Lie groups with a free module of
covariants, Invent. Math., 50 (1978), 1-12.

[25] A. Suslin, Projective modules over a polynomial ring, Dokl. Akad. Nauk
SSSR, 26 (1976) (=Soviet Math. Doklady, 17 (1976), 1160-1164).

DEPARTMENT OF MATHEMATICS, HIMEJI INSTITUTE OF TECHNOLOGY, 2167
SHOSHA, HIMEJI 671-2201, JAPAN
E-mail address: kayo@sci.himeji-tech.ac.jp



