
CERTAIN MODULI OF ALGEBRAIC G-VECTOR

BUNDLES OVER AFFINE G-VARIETIES

KAYO MASUDA

Abstract. Let G be a reductive complex algebraic group and P

a complex G-module with algebraic quotient of dimension ≥ 1.
We construct a map from a certain moduli space of algebraic G-
vector bundles over P to a C-module possibly of infinite dimension,
which is an isomorphism under some conditions. We also show non-
triviality of moduli of algebraic G-vector bundles over a G-stable
affine hypersurface of some type. In particular, we show that the
moduli space of algebraic G-vector bundles over a G-stable affine
quadric with fixpoints and one-dimensional quotient contains Cp.

Introduction and results

Let G be a reductive algebraic group defined over the ground field
C of complex numbers. One of the most important problems in the
theory of algebraic group action is to understand algebraic G-actions
on affine space An. The following problem is fundamental;

Linearization Problem

Is every action of G on An linearizable, i.e., conjugate to a linear
action under polynomial automorphisms of An?

In 1989, Schwarz [23] presented the first examples of non-linearizable
actions on affine space. In fact, he first showed that there exist non-
trivial algebraic G-vector bundles over G-modules, and the non-lineari
zable actions appear on the total spaces of non-trivial algebraic G-
vector bundles he found. An algebraic G-vector bundle E over an
affine G-variety X is an algebraic vector bundle p : E → X together
with a G-action on E such that p is G-equivariant and the action on
the fibers is linear. By definition, every fiber over the fixpoint locus
XG is a G-module. An algebraic G-vector bundle is called trivial if
it is isomorphic to a G-vector bundle of the form X × Q → X for a
G-module Q. When the base space is a G-module, if forgetting the G-
action, the total space E is an affine space by the affirmative solution to
the Serre Conjecture by Quillen [22] and Suslin [25]. So, the G-action
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on the total space of a non-trivial G-vector bundle over a G-module is
a candidate for a non-linearizable action on affine space. In fact, there
are some criteria for the G-action on E being non-linearizable ([1],[7],
[18]). So far, all known examples of non-linearizable action are obtained
from non-trivial algebraic G-vector bundles. For an abelian G, at this
point, there are no counterexamples to the Linearization Problem; for,
by Masuda-Moser-Petrie [19], every G-vector bundle over a G-module
is trivial when G is abelian. The key point of their proof is to show
that one can reduce triviality of a G-vector bundle over a G-module P
to triviality of a vector bundle over the algebraic quotient space P//G
(=the spectrum of the ring of G-invariant polynomials on P ). Since G
is abelian, P//G is a normal affine toric variety, and triviality of a vector
bundle over a normal affine toric variety was obtained by Gubeladze
[5]. We refer to Kraft [10] for recent topics in affine algebraic geometry
and algebraic group action related to the Linearization Problem.

In this article, we study algebraic G-vector bundles over affine G-
varieties X, especially in the case that X is a G-module. Throughout
this article, we assume that X is irreducible and smooth and that
XG is non-empty. We denote by VECG(X,Q) the set of equivariant
isomorphism classes of algebraic G-vector bundles over X such that
every fiber over XG is isomorphic to a G-module Q. The isomorphism
class of a G-vector bundle E → X is denoted by [E]. Suppose that
the base space is a G-module P . In this case, we have some infor-
mation on VECG(P,Q) ([1], [2], [23], [11], [6], [18], [20]). By Bass-
Haboush [1], every G-vector bundle over P is stably trivial, i.e., there
exists a G-module S such that a Whitney sum E ⊕ (P × S) is triv-
ial. For an abelian G, VECG(P,Q) is trivial, i.e., a trivial set consist-
ing of the trivial class [P × Q] by Masuda-Moser-Petrie [19]. For a
non-abelian G, if the dimension of P//G is at most one, VECG(P,Q)
is well-understood. When dimP//G = 0, VECG(P,Q) is trivial ([2],
[12]). When dimP//G = 1, however, VECG(P,Q) can be non-trivial.
Schwarz ([23], cf. Kraft-Schwarz [11]) showed that VECG(P,Q) is iso-
morphic to an additive group Cp for a nonnegative integer p, and the
non-trivial G-vector bundles found by Schwarz led to the first exam-
ples of non-linearizable actions on affine space, as is already mensioned
above. The result of Schwarz extends to the case where the base
space is a (not necessarily irreducible) G-stable affine cone X with
one-dimensional quotient, namely, it holds that VECG(X,Q) ∼= Cp for
some p ([21],[15]). However, when dimP//G ≥ 2, VECG(P,Q) is not
finite-dimensional any more. In fact, VECG(P⊕Cm, Q) for a G-module
P with one-dimensional quotient and a trivial G-module Cm is isomor-
phic to the p times direct product of a polynomial ring C[y1, · · · , ym]
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where p is a nonnegative integer such that VECG(P,Q) ∼= Cp [16].
Furthermore, Mederer [21] presented examples of VECG(P,Q) which
contains an uncountably-infinite dimensional space for a finite group
G. Using Mederer’s result, it is shown that VECG(P,Q) can contain
an uncountably-infinite dimensional space also for a connected group
G [17]. However, VECG(X,Q) are not yet classified even when X is
a G-module P with dimP//G ≥ 2 except some special cases ([6], cf.
[20]) and the cases mensioned above.

We denote by O(X) the C-algebra of regular functions on X and
by O(X)G the subalgebra of G-invariants of O(X). By the finiteness
theorem of Hilbert, O(X)G is finitely generated and the algebraic quo-
tient space X//G is defined to be Spec O(X)G. Let πX : X → X//G
be the algebraic quotient map, that is, the morphism induced by the
inclusion O(X)G ↪→ O(X). Since X is irreducible, X//G is an irre-
ducible affine variety (cf. [8]). By Luna’s slice theorem [12], there
is a finite stratification of X//G = ∪iVi into locally closed subvari-
eties Vi such that πX |π−1

X
(Vi)

: π−1
X (Vi) → Vi is a G-fiber bundle (in

the étale topology) and the isotropy groups of closed orbits in π−1
X (Vi)

are all conjugate to a fixed reductive subgroup Hi. The unique open
dense stratum of X//G, which we denote by U , is called the principal
stratum and the corresponding isotropy group, which we denote by
H, is called a principal isotropy group. The principal isotropy group
H is the minimal group among Hi up to conjugation. Suppose that
dimX//G ≥ 1. We denote by VECG(X,Q)0 the subset of VECG(X,Q)
consisting of elements which are trivial over π−1

X (U) and π−1
X (V ) with

fiber Q where V := X//G− U . Though we do not know how to com-
pute VECG(X,Q), it is not difficult to analyse VECG(X,Q)0 since
every [E] ∈ VECG(X,Q)0 is determined by a transition function with
respect to two trivializations of E. In the case thatX is a (not necessar-
ily irreducible) G-stable affine cone with dimX//G = 1, in particular,
a G-module with one-dimensional quotient, VECG(X × Am, Q) and
VECG(X ×Am, Q)0 coincide and we can compute VECG(X ×Am, Q)0

by analysing transition functions ([11], [16]). We assume that the ideal
of V is principal; for, if [E] ∈ VECG(X,Q) is trivial over π−1

X (U) such
that π−1

X (V ) is of codimension ≥ 2, then E is trivial. Our first result is
a classification of VECG(P,Q)0 for a G-module P with dimP//G ≥ 2.

Theorem 1. Let P be a G-module such that dimP//G ≥ 2 and the
ideal of the complement of the principal stratum in P//G is principal.
Let Q be a G-module. Then there exists a map

ΨP,Q : VECG(P,Q)0 → CP (Q).
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Here CP (Q) is a C-module possibly of infinite dimension (cf. 2.3). If
Q is multiplicity free with respect to a principal isotropy group of P
and if P has generically closed orbits, then ΨP,Q is an isomorphism.

Here, a G-module Q is called “multiplicity free with respect to a
reductive subgroup H” if every irreducible H-module appears in Q,
viewed as an H-module, with multiplicity at most one, and we say “P
has generically closed orbits” if every fiber of the quotient map πP over
the principal stratum consists of a closed orbit.

For any G-module P with one-dimensional quotient and any Q,
ΨP⊕Cm,Q in Theorem 1 is an isomorphism onto CP⊕Cm(Q) ∼= (C[y1, · · · ,
ym])p, which coincides with the isomorphism obtained in [16].

Next, we investigate VECG(X,Q)0 for an affine quadric X. An affine
quadric of dimension N is an affine hypersurface X := {(x0, · · · , xN) ∈
AN+1 |

∑N
i=0 x

2
i = 1}. We suppose that G is connected and acts on

an affine quadric X in such a way that the kernel of the action is
finite. Suppose also that XG is not empty and dimX//G = 1. Then
by Doebeli ([3] [4]), X is G-isomorphic to an affine quadric XP :=
{(x, v) ∈ P ⊕ C | u(x) + v2 = 1}, where P is an orthogonal G-module
with P//G ∼= A1 and u(x) ∈ O(P )G is an invariant quadratic form
generating O(P )G. The G-action onXP is the one induced by the linear
action on P . This time, however, the situation is rather different from
that in the case of G-modules. The fixpoint locus XG

P consists of two
points {(O,±1)} where O is the origin of P , whereas the fixpoint locus
of a G-module is an affine space, hence connected. Though XP//G
is isomorphic to A1 = Spec C[v], V of XP//G consists of two points
{v = ±1}, hence V of XP//G is disconnected. For a G-module, V is
connected since V is defined by invariant homogeneous polynomials.
Thus we cannot apply methods in case of G-modules directly to a case
of an affine quadric. While, note that X is viewed as a G × (Z/2Z)-
variety, where Z/2Z acts on X ∼= XP ⊂ P ⊕C via a (non-trivial) linear
action on C. Then X/(Z/2Z) ∼= P as a G-variety. It is easy to see
that the quotient map πZ2

: X → X/(Z/2Z) ∼= P induces an injection
π∗

Z2
: VECG(P,Q) → VECG(X,Q) (cf. [9]). Since VECG(P,Q) ∼= Cp

by the result of Schwarz, VECG(X,Q) contains a space isomorphic to
Cp. We generalize this and obtain the following result.

Theorem 2. Let P be a G-module with dimP//G ≥ 1. For f ∈ O(P )G

and an integer d ≥ 2, let XP (f, d) be a G-stable hypersurface {(x, v) ∈
P ⊕ C | f(x) + vd = 1}. Then, the quotient map πZd

: XP (f, d) →
XP (f, d)/(Z/dZ) ∼= P induces an injection for any G-module Q

π∗
Zd

: VECG(P,Q) → VECG(XP (f, d), Q).
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Hence, if ΨP,Q in Theorem 1 is a surjection onto a non-trivial CP (Q),
then VECG(XP (f, d), Q) is non-trivial, too.

This article consists of three parts. In section 1, we investigate
VECG(X,Q)0 for an irreducible smooth affineG-varietyX by analysing
transition functions of G-vector bundles. We have in mind as an X a
G-module. Our technique is based on the one established by Kraft-
Schwarz [11]. Using the results obtained in section 1, we prove The-
orem 1 in section 2. We compute VECG(P,Q)0 explicitly in exam-
ples. In section 3, we ingestigate VECG(X,Q)0 in the case where V is
not connected, in particular, in the case where X is a G-stable affine
hypersurface represented by an affine quadric with fixpoints and one-
dimensional quotient.

The author expresses her gratitude to Professor M. Brion for sug-
gesting to observe algebraic G-vector bundles over affine quadrics. She
thanks also M. Miyanishi for his encouragement.

1. General results

Let G be a reductive algebraic group and X an irreducible smooth
affineG-variety. We assume that the dimension of Y := X//G is greater
than 0 and the ideal of V = Y −U is principal, where U is the principal
stratum of Y . Let f ∈ O(Y ) = O(X)G be a generator of the ideal
of V . We assume also that XG is non-empty, connected and XH is
irreducible where H is a principal isotropy group of X. The object we
have in mind as an X is a G-module. We will investigate VECG(X,Q)0

for a G-module Q.

Lemma 1.1. Let [E] ∈ VECG(X,Q)0. Then E is trivial over Xh :=
{x ∈ X | h(x) 6= 0} where h is an element of O(Y ) such that h− 1 is
contained in the ideal (f).

Proof. Since E|π−1

X
(V ) is, by the assumption, isomorphic to a trivial

bundle, it follows from the Equivariant Nakayama Lemma [2] that the
trivialization E|π−1

X
(V ) → π−1

X (V )×Q extends to a trivialization over a

G-stable open neighborhood Ũ of π−1
X (V ). Let Ṽ be the complement of

Ũ in X. Since Ṽ is a G-stable closed set, πX(Ṽ ) is closed in Y [8]. Note

that V ∩ πX(Ṽ ) = ∅ since π−1
X (V )∩ Ṽ = ∅. Let I ⊂ O(Y ) be the ideal

which defines πX(Ṽ ). Then (f) + I 3 1 since V ∩ πX(Ṽ ) = ∅. Hence
there exists an h ∈ I such that h − 1 ∈ (f). Since Yh ⊂ Y − πX(Ṽ ),

Xh = π−1
X (Yh) ⊂ π−1

X (Y − πX(Ṽ )) ⊂ Ũ . Thus E is trivial over Xh. �
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We define an affine scheme Ỹ = Spec Ã by

Ã = {h1/h2|h1, h2 ∈ O(Y ), h2 − 1 ∈ (f)}.

Set Ỹf := Yf ×Y Ỹ , X̃ := Ỹ ×Y X and X̃f := Ỹf ×Y X. The group
of morphisms from X to M := GL(Q) is denoted by Mor (X,M) or
M(X). The group G acts on M by conjugation via the represen-
tation ρ : G → GL(Q). The action of G on M(X) is defined by
(g · µ)(x) = ρ(g)µ(g−1x)ρ(g)−1 for g ∈ G, x ∈ X, µ ∈ M(X). We
denote the group of G-invariants of M(X) by Mor(X,M)G or M(X)G.
Let [E] ∈ VECG(X,Q)0. Then by the definition of VECG(X,Q)0, E
has a trivialization over π−1

X (U) = Xf , and by Lemma 1.1 E has a
trivialization also over an open neighborhood of π−1

X (V ), i.e., Xh for
some h ∈ O(Y ) such that h − 1 ∈ (f). Hence, assigning to [E] the
transition function with respect to the trivializations E|Xf

∼= Xf × Q
and E|Xh

∼= Xh × Q, we have a bijection to a double coset (cf. [15,
3.4])

VECG(X,Q)0
∼= M(Xf )

G\M(X̃f )
G/M(X̃)G.

Since XH is irreducible, the inclusion XH ↪→ X induces an isomor-
phism XH//N(H)

∼
→ X//G where N(H) is the normalizer of H in G

[14]. Set W := N(H)/H. When we consider XH as a W -variety, we de-
note it by B. Note that the principal isotropy group of B is trivial. Let
β : M(X)G → L(B)W be the restriction map where L := GL(Q)H . We
say X has generically closed orbits if π−1

X (ξ) for any ξ ∈ Yf consists of a
closed orbit, i.e. π−1

X (ξ) ∼= G/H. When X has generically closed orbits,
GXH

f = Xf . Hence M(Xf )
G = Mor (GXH

f ,GL(Q))G ∼= L(Bf)
W , i.e.,

β is an isomorphsim over Yf . The group homomorphism β induces a
map

VECG(X,Q)0
∼= M(Xf )

G\M(X̃f )
G/M(X̃)G

→ L(Bf)
W\L(B̃f)

W/β(M(X̃)G), (1)

which is an isomorphism when X has generically closed orbits.
We decompose Q as an H-module

Q ∼= ⊕q
i=1niQi

where Qi are pairwise non-isomorphic irreducible H-modules and ni is
the multiplicity of Qi. We call Q multiplicity free with respect to H if
ni = 1 for all i. It follows from Schur’s lemma that

L = GL(Q)H ∼=

q∏

i=1

GLni
.
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Let T be the center of L. Then T is W -stable and T ∼= (C∗)q. When
Q is multiplicity free with respect to H, L = T . Look at the action of
W on T . Note that g ∈ N(H) permutes the H-isotypic components
niQi (i = 1, · · · , q). Since w ∈ W acts on L by conjugation by ρ(g)
where g ∈ N(H) is a representative of w, W acts on T ∼= (C∗)q by
permuting C∗s. Hence W acts on T as a subgroup of the symmetric
group Sq via a continuous homomorphism from W to Sq. Thus the
connected component W0 of W containing the identity acts trivially
on T and the action of W on T reduces to the action of W/W0. The
determinant map on each factor GLni

of L induces a homomorphism
of groups; τ : L(B)W → T (B)W . The homomorphism τ induces a map

L(Bf)
W\L(B̃f)

W/β(M(X̃)G) → T (B̃f)
W/(T (Bf)

W (τ ◦ β)M(X̃)G). (2)

By (1) and (2), we have

Lemma 1.2. There exists a map

ψX,Q : VECG(X,Q)0 → T (B̃f)
W/(T (Bf)

W (τ ◦ β)M(X̃)G).

If Q is multiplicity free with respect to H and X has generically closed
orbits, then ψX,Q is an isomorphism.

Remarks 1. For t ∈ O(Y ), let VECG(X,Q; t) be the subset of
VECG(X,Q) consisting of elements [E] such that E is trivial over
π−1
X (Yt) and its complement. Then one obtains, in a similar way to

the above, a map from VECG(X,Q; t) to a quotient group.
2. When H is trivial, M = L and the target residue group in

Lemma 1.2 is O(Ỹf)
∗/O(Yf)

∗τ(M(X̃)G), where O(Ỹf)
∗ (resp. O(Yf)

∗)

denotes the group of invertible elements in O(Ỹf) (resp. O(Yf)). If

Q contains a trivial G-module, then τ = det : M(X̃)G → O(Ỹ )∗

is surjective. Furthermore, if Pic Y = (0), then the residue group

O(Ỹf)
∗/O(Yf)

∗τ(M(X̃)G) becomes trivial (cf. proof of Lemma 1.3).
Thus when H is trivial and Pic Y = (0) (e.g. X is a G-module with a
trivial principal isotropy group), ψX,Q becomes trivial if Q contains a
trivial G-module.

We will analyse the target residue group in Lemma 1.2. We pose the
following conditions:

(I) V is connected and O(π−1
B (V ))∗ = C∗.

(II) The restriction O(π−1
B (V ))∗ → O(XG)∗ is an isomorphism.
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It follows from the conditions (I) and (II) that the restriction of π−1
B (V )

onto XG induces an isomorphism T (π−1
B (V ))W ∼= TW (XG) ∼= TW . Set

T (B̃)1 := {µ ∈ T (B̃) | µ|π−1

B
(V ) = I}

T (B̃)W1 := T (B̃)1 ∩ T (B̃)W

where I is the constant map to the identity element of T . Note that
T (B̃) = T (B̃)1T (π−1

B (V )) = T (B̃)1T .

Lemma 1.3. Suppose that the conditions (I) and (II) are satisfied. If
Pic B = (0) and O(B)∗ = C∗, then

T (B̃f)
W = T (Bf)

WT (B̃)W1 .

Proof. We first claim that T (B̃f) = T (Bf)T (B̃)1. Since T (B̃) =

T (B̃)1T , it suffices to prove T (B̃f) = T (Bf)T (B̃). Note that every

element of T (B̃f) is considered as a transition function of a Whitney
sum of line bundles over B with respect to trivializations over Bf and
an open neighborhood of π−1

B (V ). Since PicB = (0), every line bundle

over B is trivial. This implies that T (B̃f) = T (Bf)T (B̃). Let µ ∈
T (B̃f)

W . Write µ = µ̇µ̃ with µ̇ ∈ T (Bf ) and µ̃ ∈ T (B̃)1. Note that

T (Bf) ∩ T (B̃)1 = T (B)1 = {I} since O(B)∗ = C∗. Since µ is W -

invariant, we have µ̇−1(w · µ̇) = µ̃(w · µ̃)−1 ∈ T (Bf ) ∩ T (B̃)1 = {I} for
every w ∈ W . Hence µ̇ and µ̃ are W -invariant, and the assertion is
thus verified. �

Set
M(X̃)G1 := {µ ∈M(X̃)G | µ|XG = I}.

Note that (τ ◦β)(M(X̃)G1 ) ⊂ T (B̃)W1 under the conditions (I) and (II).

Lemma 1.4. Suppose that the assumptions in Lemma 1.3 are satisfied.
If there exists a G-equivariant morphism r : X → XG such that r ◦ i =
id where i : XG ↪→ X is the inclusion, then there exists an isomorphism

T (B̃f)
W/(T (Bf)

W (τ ◦ β)M(X̃)G) ∼= T (B̃)W1 /(τ ◦ β)(M(X̃)G1 ).

Proof. We claim that (τ ◦ β)M(X̃)G ⊂ (τ ◦ β)(M(X̃)G1 )TW . In

fact, let µ ∈ M(X̃)G and µ0 := µ|XG ∈ MG(XG). Then (τ ◦ β)µ0 ∈
TW (XG) ∼= TW . Let p : MG(XG) → M(X)G be the group homomor-
phism induced by r. Then µ̃ := p(µ0) ∈ M(X)G satisfies µ̃|XG = µ0.
Since O(B)∗ = C∗, (τ ◦β)µ̃ ∈ TW . The claim follows from that µ = µ1µ̃

where µ1 = µµ̃−1 ∈M(X̃)G1 . Since (τ ◦β)M(X̃)G ⊂ (τ ◦β)(M(X̃)G1 )TW

and T (Bf )
W ∩ T (B̃)W1 = T (B)W1 = {I}, we obtain by Lemma 1.3 the

desired isomorphism. �

We proceed to analyse the residue group T (B̃)W1 /(τ ◦ β)(M(X̃)G1 ).
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Let Ŷ be the completion of Y along V and let B̂ = Ŷ ×Y B and
X̂ = Ŷ ×Y X. Note that an element of M(X̂)G (resp. T (B̂)W ) is
considered as an invertible matrix (resp. an invertible diagonal matrix)

with entries in O(X̂) (resp. O(B̂)) invariant under the G-action (resp.
the W -action). For r ≥ 1, we define

T (B̂)Wr := {µ ∈ T (B̂)W | µ = I mod b
rO(B̂)}

M(X̂)Gr := {µ ∈M(X̂)G | µ = I mod a
rO(X̂)},

where a ⊂ O(X) denotes the ideal of XG ⊂ X and b ⊂ O(B) denotes

the ideal of π−1
B (V ), i.e. b =

√
(f). We define L(B̂)Wr , similarly. Then

there exists a canonical map

T (B̃)W1 /(τ ◦ β)(M(X̃)G1 ) → T (B̂)W1 /(τ ◦ β)(M(X̂)G1 ).

We will show that this canonical map is a surjection when X has gener-
ically closed orbits. First, we prove

Lemma 1.5. For every r ≥ 1,

T (B̂)W1 = T (B̃)W1 T (B̂)Wr .

Proof. It is clear that T (B̂)W1 ⊃ T (B̃)W1 T (B̂)Wr . We show the op-

posite inclusion. Let µ = (µ1(x), . . . , µq(x)) ∈ T (B̂)W1 where µi(x) ∈

O(B̂) and µi = 1 mod bO(B̂). Recall that W acts on T ∼= (C∗)q by
permuting C∗s. Since the identity component W0 acts trivially on T ,
µi(x) ∈ O(B̂)W0 for 1 ≤ i ≤ q. Let µ̄i(x) ∈ O(B)W0 be a function such

that µi(x) = µ̄i(x) mod b
rO(B̂). Since µi = 1 mod bO(B̂), µ̄i = 1

mod b. Define µ̄ := (µ̄1(x), . . . , µ̄q(x)) and µ̃ :=
∏

w∈W/W0
w · µ̄. Then

µ̃ ∈ T (B̃)W1 and µ̃−1µ ∈ T (B̂)Wr . �

Let m, l and t be the Lie algebras of M , L and T , respectively. Then
m = End Q, l = End (Q)H ∼= ⊕q

i=1Mni
and t ∼= Cq where Mni

denotes
an (ni × ni)-matrix. Let β∗ : m(X)G → l(B)W be the homomorphism
of O(Y )-modules induced by the restriction of X onto B. Similarly, let
τ∗ : l(B)W → t(B)W be the homomorphism induced by the trace map
on each Mni

of l ∼= ⊕q
i=1Mni

. Note that

t(B)W ∼= (O(B) ⊗C t)W , l(B)W ∼= (O(B) ⊗C l)W

and m(X)G ∼= (O(X) ⊗C m)G,
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which are all finitely generated modules over O(Y ) (cf. [8, II,3.2]). For
a positive integer r, we define

t(B)Wr := (br ⊗C t)W ,

l(B)Wr := (br ⊗C l)W ,

m(X)Gr := (ar ⊗C m)G,

which are also finitely generated modules over O(Y ). We define t(B̂)Wr ,

l(B̂)Wr and m(X̂)Gr , similarly. The exponentials exp : l → L and exp :

m → M induce isomorphisms (with inverse log) l(B̂)Wr
∼
→ L(B̂)Wr and

m(X̂)Gr
∼
→M(X̂)Gr (Here, the latter exponential series converges in the

a-adic topology).

Lemma 1.6. Suppose that X has generically closed orbits. Then there
exists an integer r0 such that β∗m(X)G1 ⊃ l(B)Wr and β(M(X̂)G1 ) ⊃

L(B̂)Wr for all r ≥ r0.

Proof. Let {Ci} and {Aj} be generating systems of l(B)W1 and m(X)G1
over O(Y ), respectively. Since X has generically closed orbits, β∗ :
m(Xf)

G → l(Bf )
W is an isomorphism. Thus Ci is written as Ci =

β∗(
∑

j cijAj) where cij ∈ O(Y )f . Let eij ≥ 0 be the minimal in-

teger such that f eijcij ∈ O(Y ) and d be the minimal integer such
that b

d ⊆ (f). Put e := maxi,j{eij} and r0 := de + 1. Then for
r ≥ r0, any element of l(B)Wr is of the form f eC where C ∈ l(B)W1 .
Since C =

∑
i ciCi for ci ∈ O(Y ) and f ecij ∈ O(Y ) for every i, j, so

f eC ∈ β∗m(X)G1 . Hence β∗m(X)G1 ⊃ l(B)Wr . The second inclusion

follows from β∗m(X̂)G1 ⊃ l(B̂)Wr via the exponential maps. �

Remark In order to prove Lemma 1.6, it is sufficient to hold that
β∗ : m(Xf)

G → l(Bf )
W is surjective.

Since τ∗ : l(B̂)Wr → t(B̂)Wr is the trace map, τ∗ is surjective. Hence,

via the exponential maps, T (B̂)Wr = τ(L(B̂)Wr ). Under the assumption

in Lemma 1.6, T (B̂)Wr = τ(L(B̂)Wr ) ⊂ (τ ◦β)(M(X̂)G1 ) for a sufficiently
large r. By this together with Lemma 1.5, we obtain

Lemma 1.7. Suppose that X has generically closed orbits. Then the
canonical map

T (B̃)W1 /(τ ◦ β)(M(X̃)G1 ) → T (B̂)W1 /(τ ◦ β)(M(X̂)G1 )

is a surjection. Furthermore, if Q is multiplicity free with respect to
H, then L(B̃)W1 /β(M(X̃)G1 ) → L(B̂)W1 /β(M(X̂)G1 ) is an isomorphism.

Proof. The first assertion is clear from the above statement. As
for the second assertion, it suffices to show that the canonical map
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is injective. We will show that β(M(X̂)G1 ) ∩ L(B̃)W1 ⊂ β(M(X̃)G1 ).

Let D̂ ∈ M(X̂)G1 and β(D̂) ∈ β(M(X̂)G1 ) ∩ L(B̃)W1 . We regard D̂

as an element of m(X̂)G and show that D̂ ∈ m(X̃)G. Since β(D̂) ∈
L(B̃)W1 is translated as β∗(D̂) ∈ l(B̃)W , it follows from Lemma 1.6 that

f rβ∗(D̂) = β∗(D̃) for a sufficiently large r and D̃ ∈ m(X̃)G. Since X
has generically closed orbits, β∗ : m(Xf )

G → l(Bf)
W is an isomorphism,

so, β∗ : m(X)G → l(B)W is an injection. Hence β∗ : m(X̂)G → l(B̂)W

is also an injection. Thus f rD̂ = D̃. This implies that D̂ ∈ m(X̃)G.

Hence D̂ ∈M(X̃)G1 and the assertion follows. �

The logarithmic map induces an isomorphism

T (B̂)W1 /(τ ◦ β)(M(X̂)G1 ) ∼= t(B̂)W1 /τ∗β∗m(X̂)G1 .

We set
CX(Q) := t(B̂)W1 /τ∗β∗m(X̂)G1 .

WhenQ is multiplicity free with respect toH, CX(Q) = l(B̂)W1 /β∗m(X̂)G1 .
By the results obtained so far, we have

Theorem 1.8. There exists a map

T (B̃)W1 /(τ ◦ β)(M(X̃)G1 ) → t(B̂)W1 /τ∗β∗m(X̂)G1 = CX(Q),

which is an isomorphism when Q is multiplicity free with respect to H
and X has generically closed orbits.

2. G-vector bundles over G-modules

In this section, we consider the case where the base space X is a
G-module P and give a proof of Theorem 1 in the introduction. Let
P be a G-module such that Y = P//G is of dimension ≥ 1 and the
ideal of V = Y − U is principal. Note that the ideal of V is generated
by an invariant homogeneous polynomial f ∈ O(P )G and that V is
connected. Let H be a principal isotropy group of P and let B = PH.

Lemma 2.1. (1) Pic B = (0) and O(B)∗ = O(PG)∗ = C∗.
(2) π−1

B (V ) is a connected affine cone and O(π−1
B (V ))∗ = C∗.

Proof. (1) The assertion follows from the fact that B and PG are
affine spaces.

(2) One easily sees that π−1
B (V ) is a connected affine cone. Indeed,

π−1
B (V ) is a union of irreducible reduced affine cones ∪jSpecR(j) pass-

ing through the origin. Each affine cone Spec R(j) has a positively

graded integral domain R(j) = ⊕k≥0R
(j)
k as the coordinate ring such
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that R
(j)
0 = C. Since (R(j))∗ = C∗ for each j, the standard argument

in commutative algebras shows that O(π−1
B (V ))∗ = C∗. �

The projection p : P → PG is G-equivariant and has the property
p ◦ i = id for the inclusion i : PG ↪→ P . By this fact and the results
obtained so far, we obtain a map ΨP,Q for a G-module Q;

VECG(P,Q)0
ψP,Q

→ T (B̃f)
W/(T (Bf)

W (τ ◦ β)M(P̃ )G) (Lemma 1.2)

∼= T (B̃)W1 /(τ ◦ β)(M(P̃ )G1 ) (Lemmas 1.4, 2.1)

→ t(B̂)W1 /τ∗β∗m(P̂ )G1 = CP (Q) (Theorem 1.8).

Hence we have

Theorem 2.2. Let P be a G-module as above and let Q be a G-module.
There is a map

ΨP,Q : VECG(P,Q)0 → CP (Q)

which is an isomorphism when Q is multiplicity free with respect to H
and P has generically closed orbits.

Remarks 1. Let P be any G-module and let t be a G-invariant
homogeneous polynomial on P . We use the notation in the remark of
Lemma 1.2. By the construction similar to the above, one obtains a
map

ΨP,Q(t) : VECG(P,Q; t) → t(B̂)W1 /τ∗β∗m(P̂ )G1 =: CP,t(Q)

where the completion is (t)-adic completion. One can show that ΨP,Q(t)
is surjective for any G-module Q if one takes t ∈ O(Y ) so that Yt is

contained in the principal stratum of GPH (cf. [15, 1.1], [2, 6.5]).
2. When H is trivial and Q contains a trivial G-module, ψP,Q is

trivial (remark of Lemma 1.2), hence ΨP,Q is also trivial.

This completes the proof of Theorem 1 in the introduction except
the statement on CP (Q). Note that Theorem 1 holds also in the case
dimP//G = 1. When dimP//G = 1, it is known that P//G ∼= A1

and VECG(P ⊕ Cm, Q) = VECG(P ⊕ Cm, Q)0 for m ≥ 0 ([11], [16]).
Suppose that dimP//G = 1. Then CP (Q) is a finite C-module by the
formula (3) below (cf. Lemma 2.3) and CP⊕Cm(Q) ∼= (C[y1, · · · , ym])p

by easy calculation. By comparing ΨP⊕Cm,Q with the isomorphism

VECG(P ⊕ Cm, Q)
∼
→ (C[y1, · · · , ym])p given in [16] (cf. [11]), one sees

that ΨP⊕Cm,Q for m ≥ 0 is an isomorphism for any P and Q.
Now, we look at CP (Q) more closely. A G-module P is called cofree

if O(P ) is a free module over O(P )G. It is known that cofree modules
are coregular, i.e., P//G is isomorphic to affine space (cf. [24]). Fur-
thermore, if PH is a cofree N(H)-module, then P is a cofree G-module
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[24]. We suppose that B is a cofree W -module and make some obeser-
vation on CP (Q). Then, O(Y ) is isomorphic to a polynomial ring and
m(P )G and t(B)W are finite free modules over O(Y ). Since b is princi-
pal, t(B)W1 is also a finite free module over O(Y ). The rank of t(B)W1
is the same as the rank of t(B)W , which is equal to q = dim t [24].
Note that O(Y ), m(P )G and t(B)W inherit a grading on O(P ). Since a

and b are homogeneous ideals, m(P )G1 and t(B)W1 are also graded. Let
{Ai; 1 ≤ i ≤ `} be a homogeneous generating system of m(P )G1 over
O(Y ) and let {Ci; 1 ≤ i ≤ q} be a homogeneous basis of t(B)W1 over
O(Y ). Then

τ∗β∗Ai =

q∑

j=1

aijCj for aij ∈ O(Y ).

Noting that t(B̂)W1 = t(B)W1 ⊗O(Y ) O(Ŷ ) and m(P̂ )G1 = m(P )G1 ⊗O(Y )

O(Ŷ ),

CP (Q) ∼= ⊕q
j=1O(Ŷ )/âj (3)

where âj = ajO(Ŷ ) and aj is the ideal in O(Y ) generated by {aij; 1 ≤
i ≤ `}. Let ej = degCj and ai = degAi. Since τ∗ and β∗ preserve the
grading, deg aij = ai − ej if aij 6= 0. The following is easily proved.

Lemma 2.3. Suppose that B is cofree. If there is some j such that
ai > ej for any i, then CP (Q) is non-trivial. If there exists some j such
that ht aj < dimY , then CP (Q) is an infinite dimensional C-module.

Remark The module CP (Q) can be of infinite dimension, but of
countably-infinite dimension.

This completes the proof of Theorem 1. By Theorem 2.2 and Lemma
2.3, we have

Corollary 2.4. Suppose that ΨP,Q in Theorem 2.2 is surjective and
B is cofree. If ai > ej for some j and any i, then VECG(P,Q)0

is non-trivial. If there exists some j such that ht aj < dimY , then
VECG(P,Q)0 contains an infinite dimensional space.

We give a couple of examples.

Example 2.1

Let G = SLn (n ≥ 2) and let P be the Lie algebra sln with adjoint
action. We denote a maximal torus of G by Tn and its Lie algebra by tn.
Then the principal isotropy group of sln is Tn and B = (sln)

Tn = tn.
W = N(Tn)/Tn is the Weyl group which is isomorphic to Sn. The
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algebraic quotient space Y is sln//G ∼= tn//W ∼= An−1 and V is of codi-
mension one. Hence the ideal of V is generated by a single homoge-
neous polynomial f ∈ O(Y ) ∼= C[t1, · · · , tn−1]. Since the general fiber
of the quotient map of sln is isomorphic to G/Tn, sln has generically
closed orbits. Let ϕ1 be the standard representation space of G and
ϕm1 (m ≥ 1) be the symmetric tensor product Sm(ϕ1). Let Q = ϕm1 .
Then Q is multiplicity free with respect to Tn. Hence L = T ∼= (C∗)q

for q = dimQ =

(
n+m− 1

m

)
.

Consider the case n = 2. Then G = SL2 and the quotient map
is given by the determinant map t : P = sl2 → sl2//G ∼= A1. Hence
O(Y ) = C[t] and t is, as an element of O(B)W , written as t = x2 with a
coordinate x on B = t2

∼= C. Note that T2
∼= C∗ and W ∼= Z/2Z. The

stratification of sl2//G = A1 consists of two strata, {0} and A1 − {0}.
Hence V = {0} and f = t. Let Rm be the SL2-module of binary forms
of degree m. Then P = sl2

∼= R2 and Q ∼= Rm. As a T2 = C∗-module,
Q = ⊕m

l=0Qm−2l where Qm−2l is an irreducible T2-module with weight
m−2l. As a G-module, m = EndRm

∼= (Rm)∗⊗Rm
∼= ⊕m

l=0R2l. Hence,

m(sl2)
G ∼= ⊕m

l=0(O(R2) ⊗R2l)
G = ⊕m

l=0Ml

and
l(t2)

W ∼= ⊕m
l=0(O(t2) ⊗ RT2

2l )
W = ⊕m

l=0Nl

where Ml := (O(R2) ⊗R2l)
G and Nl := (O(t2) ⊗RT2

2l )
W . The modules

Ml and Nl are free over O(Y ) = C[t] of rank one. In fact, since Ml
∼=

Mor(R2, R2l)
G, the homogeneous generator Al of Ml is given by the l-th

power map and the homogeneous generator Cl of Nl = (C[x]⊗RT2

2l )
W is

given by 1⊗el for l even, x⊗el for l odd, where el is a base of RT2

2l
∼= C.

Hence m(sl2)
G and l(t2)

W are free modules over C[t] of rank m+1. Note
that degAl = l and degCl is 0 for l even, 1 for l odd. Since C[t] is a
principal ideal domain, m(sl2)

G
1 is also free over C[t]. A homogeneous

basis of m(sl2)
G
1 over C[t] is {tA0, Al; l = 1, 2, · · · , m} since sl2

G =

{O}. Since b =
√

(t) = (x), a homogeneous basis of l(t2)
W
1 over

C[t] is {tC0, tC2l, C2l−1; l = 1, · · · , m/2} for m even, {tC2l, C2l+1; l =
0, 1, · · · , [m/2]} for m odd. Here, [a] denotes the largest integer not-
exceeding a. Since β∗(Al) = t[l/2]Cl,

Csl2
(ϕm1 ) ∼= l(t2)

W
1 /β∗m(sl2)

G
1
∼= Cp

where p =
∑m

l=1[(l−1)/2] = [(m−1)2/4]. Since it follows from sl2//G ∼=
A1 that VECG(sl2, ϕ

m
1 ) = VECG(sl2, ϕ

m
1 )0, we have by Theorem 2.2

Proposition 2.5. [23] Let G = SL2. Then

VECG(sl2, ϕ
m
1 ) ∼= Cp for p = [(m− 1)2/4].
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Next, consider the case that n ≥ 3. As a G-module,

m = End ϕm1
∼= (ϕm1 )∗ ⊗ ϕm1

∼= ⊕m
l=0sl

l
n

where sl
l
n is the irreducible component of the highest weight in S l(sln).

Hence
m(sln)

G ∼= ⊕m
l=0(O(sln) ⊗ sl

l
n)
G = ⊕m

l=0Ml

where Ml := (O(sln) ⊗ sl
l
n)
G. Similarly,

l(tn)
W ∼= ⊕m

l=0(O(tn) ⊗ (slln)
Tn)W = ⊕m

l=0Nl

where Nl := (O(tn)⊗ (slln)
Tn)W . It is known that tn is cofree (cf. [24]).

Thus Ml and Nl, hence m(sln)
G and l(tn)

W , are finite free modules over
O(Y ). Since O(sln) ∼= ⊕d≥0S

d(sln), Ml
∼= ⊕d≥0(S

d(sln)⊗ sl
l
n)
G. Hence

every homogeneous generator of Ml has degree ≥ l. The homomor-
phism β∗ : m(sln)

G → l(tn)
W maps Ml to Nl. Set M(1)l := (a ⊗ sl

l
n)
G

and N(1)l := (b⊗ (slln)
Tn)W . Then m(sln)

G
1 = ⊕m

l=0M(1)l and l(tn)
W
1 =

⊕m
l=0N(1)l. The homomorphism β∗ maps M(1)l to N(1)l. Let {Ai} be

a homogeneous generating system of M(1)m over O(Y ) and {Ci} be a
homogenous basis of N(1)m over O(Y ). Then β∗(Ai) =

∑
j aijCj for

aij ∈ O(Y ). Since degAi ≥ m for all i and degCj < |W | + deg f [8,
II,3.6], deg aij > 0 if m is sufficiently large. Hence N(1)m/β∗(M(1)m)
is non-trivial for m� 0. We have by Theorem 2.2;

Proposition 2.6. (cf. [6]) Let n ≥ 3 and G = SLn. For m ≥ 1,
VECG(sln, ϕ

m
1 )0

∼= Csln
(ϕm1 ). In particular, VECG(sln, ϕ

m
1 )0 is non-

trivial for a sufficiently large m.

Remark In order to show that Csln(ϕm1 ) contains an infinite di-
mensional module for n ≥ 3, we need to prove that the height of the
ideal aj generated by aij ∈ O(Y ) (cf. Lemma 2.3) is smaller than n−1.
However, to calculate generators of N(1)l and M(1)l by hand is a hard
job.

Next is a new example of VECG(P,Q)0 containg an infinite dimen-
sional space.

Example 2.2

Let P = P1 ⊕ P2 and G = G1 × G2 where Pi is a Gi-module with
one-dimensional quotient for i = 1, 2. Then P is a G-module with
trivial Gi-actions on Pj for i 6= j and P//G ∼= A2. A principal isotropy
group H of P is H1 ×H2 where Hi is a principal isotropy group of Pi.
The complement of the principal stratum in P//G ∼= A2 is a union of
two lines. Let Qi (i = 1, 2) be a Gi-module. By the statement below
Theorem 2.2, there are isomorphisms VECGi

(Pi, Qi) ∼= CPi
(Qi) ∼= Cpi

for i = 1, 2. Let Q = Q1 ⊕Q2. Then Q is multiplicity free with respect
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to H when Qi is multiplicity free with respect to Hi for i = 1, 2 and
dim(QH1

1 ⊕ QH2

2 ) ≤ 1. In this case, CP (Q) is easily computed and
isomorphic to C[u1]

p2 ⊕C[u2]
p1 where O(P1)

G1 = C[u1] and O(P2)
G2 =

C[u2]. By Theorem 2.2, we have with the above notation

Theorem 2.7. Suppose that Qi is multiplicity free with respect to Hi

for i = 1, 2 and dim(QH1

1 ⊕QH2

2 ) ≤ 1. Then there is a map

VECG(P1 ⊕ P2, Q1 ⊕Q2)0 → C[u1]
p2 ⊕ C[u2]

p1,

which is an isomorphism when Pi has generically closed orbits for i =
1, 2.

Remark One can show that the map in Theorem 2.7 is surjective
for any Q and any Pi by using the fact that Zf = GPH

f for Z := GPH

when O(P )G = C[f ] (cf. [15, 1.1], the remark of Theorem 2.2).

Apply Theorem 2.7 to the case where G = SL2 ×SL2, P = sl2 ⊕ sl2,
and Q = ϕm1 ⊕ ϕn1 . Since sl2 has generically closed orbits and ϕm1 is
multiplicity free with respect to a principal isotropy group of sl2 for
m ≥ 1, we have

Theorem 2.8. Let G = SL2 × SL2. Then

VECG(sl2 ⊕ sl2, ϕ
m
1 ⊕ ϕn1 )0

∼= C[u1]
p(n) ⊕ C[u2]

p(m).

Here p(n) = [(n− 1)2/4] and either m or n is odd.

3. G-vector bundles over G× (Z/dZ)-varieties

In this section, we consider in the case that V is not connected. Such
a case occurs when X is a G-stable affine quadric with fixpoints and
one-dimensional quotient. As is remarked in the introduction, when
G is connected, such an affine quadric X is G-isomorphic to an affine
quadric

XP = {(x, v) ∈ P ⊕ C | u(x) + v2 = 1}

where P is an orthogonal G-module with P//G ∼= A1 and u(x) is an
invariant quadratic form on P such that O(P )G = C[u]. Recall that
XP is viewed as a G×(Z/2Z)-variety. We generalize this situation. Let
P be anew a G-module as in section 2, i.e., P is a G-module such that
dimP//G ≥ 1 and the ideal of the complement of the principal stratum
in P//G is generated by a homogeneous polynomial f ∈ O(P )G. For
d ≥ 2, define a G-stable hypersurface XP (d) as follows;

XP (d) := {(x, v) ∈ P ⊕ C | f(x) + vd = 1}.
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Then the fixpoint locus XP (d)G consists of d connected components.
The complement V of the principal stratum in XP (d)//G has d con-
nected components and each connected component of π−1

XP (d)(V ) con-

tains one connected component of XP (d)G. A principal isotropy group
H of XP (d) is a principal isotropy group of P . As in the case of
affine quadrics, XP (d) has a Z/dZ-action induced by a (non-trivial)
linear action of Z/dZ on C. Hence XP (d) is viewed as a G× (Z/dZ)-
variety. Then XP (d)/(Z/dZ) is G-isomorphic to P . Let πZd

: XP (d) →
XP (d)/(Z/dZ) ∼= P be the quotient by Z/dZ. Let [E] ∈ VECG(P,Q)
for a G-module Q. Then π∗

Zd
E is a G × (Z/dZ)-vector bundle over

XP (d). Viewing π∗
Zd
E as a G-vector bundle, we obtain a map

π∗
Zd

: VECG(P,Q) → VECG(XP (d), Q).

Since E ∼= π∗
Zd
E/(Z/dZ) [9], we have

Lemma 3.1. The map π∗
Zd

is injective.

Note that π∗
Zd

maps VECG(P,Q)0 to VECG(XP (d), Q)0. By Lemma
3.1 and Theorem 2.2, we obtain

Theorem 3.2. The map π∗
Zd

induces an injection

VECG(P,Q)0 → VECG(XP (d), Q)0.

Hence, if ΨP,Q in Theorem 2.2 is a surjection onto a non-trivial CP (Q),
then VECG(XP (d), Q)0 is non-trivial.

If we take as an f in the definition of XP (d) any G-invariant poly-
nomial on P , then we obtain Theorem 2 in the introduction.

Remark Theorem 3.2 is generalized as follows. Let Pi ( i = 1, 2
) be a Gi-module such that dimP1//G1 ≥ 1 and dimP2//G2 = 1. Let
t be a homogeneous generator of O(P2)

G2 . For f ∈ O(P1)
G1, define a

G1 ×G2-stable hypersurface X(f) as follows:

X(f) := {(x1, x2) ∈ P1 ⊕ P2 | f(x1) + t(x2) = 1}.

Then the quotient map πG2
: X(f) → X(f)//G2

∼= P1 induces an
injection for a G1-module Q

π∗
G2

: VECG1
(P1, Q) → VECG1

(X(f), Q).

Recall that VECG(P,Q)0 = VECG(P,Q) ∼= Cp when P has one-
dimensional quotient. Hence we have by Theorem 3.2

Corollary 3.3. Suppose that XP is a G-stable affine quadric defined as
above. Then VECG(XP , Q)0 contains a space isomorphic to Cp where
p is a nonnegative integer such that VECG(P,Q) ∼= Cp.
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We give a couple of examples.

Example 3.1

Let G = SL2. We use the same notation as in Example 2.1. Let
P = sl2 and Q = ϕm1 for m ≥ 1. Then O(sl2)

G = C[t] with an invariant

polynomial t of degree 2 and VECG(sl2, ϕ
m
1 ) ∼= Cp for p = [ (m−1)2

4
]. Let

X be a G-stable affine quadric {(x, v) ∈ sl2 ⊕C | t+ v2 = 1}. Then by
Corollary 3.3,

Proposition 3.4. With the above notation, VECG(X,ϕm1 )0 contains

Cp for p = [ (m−1)2

4
].

Remark It is known that VECG(sl2 ⊕ C, ϕm1 )0
∼= C[v]p by [16].

Example 3.2

Let G = G1 ×G2, P = P1⊕P2, and Q = Q1 ⊕Q2 as in Example 2.2.
Let O(P1)

G1 = C[u1] and O(P2)
G2 = C[u2] where ui is a Gi-invariant

homogeneous polynomial on Pi. Then P//G ∼= A2 = SpecC[u1, u2] and
the complement of the principal stratum is defined by u1u2 = 0. We
define for d ≥ 2

Xd := {(x1, x2, v) ∈ P1 ⊕ P2 ⊕ C | u1(x1)u2(x2) + vd = 1}.

Then by the remark of Theorem 2.7 and Theorem 3.2,

Proposition 3.5. Under the notation and the assumptions in Theorem
2.7, VECG(Xd, Q1⊕Q2)0 contains an infinite dimensional space if p1 +
p2 > 0.

Example 3.3

Let G = SL3 and P = sl3 with adjoint action. Then P//G ∼= A2

and the complement of the principal stratum in P//G is defined by an
invariant homogeneous polynomial f of degree 6. For d ≥ 2, define

Xd = {(x, v) ∈ sl3 ⊕ C | f + vd = 1}.

It is known that VECG(sl3, sl3)0 contains a space isomorphic to Ω1
C

which is the module of Kähler differentials of C over Q [17]. Hence we
have by Theorem 3.2

Proposition 3.6. VECG(Xd, sl3)0 contains an uncountably-infinite di-
mensional space.
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