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Introduction

The main results of this thesis are joint works with Yanagawa, and most of them can
be found in [17], except for Proposition 7.6.

Let A =
⊕

i∈N Ai be a graded (not necessarily commutative) Noetherian Koszul
algebra over a fieldK (� A0). Let M be a finitely generated graded leftA-module, and
P• its minimal free resolution. Eisenbud et al. [5] defined thelinear part lin(P•) of
P•, which is the complex obtained by erasing all terms of degree≥ 2 from the matrices
representing the differential maps ofP• (hence lin(P•)i = Pi for all i). Following Herzog
and Iyengar [11], we call ldA(M) = sup{ i | Hi(lin(P•)) , 0 } the linearity defectof M.
This invariant and related concepts have been studied by several authors (e.g., [5, 11, 15,
20, 28]). We say a finitely generated gradedA-moduleM is componentwise linear(or,
(weakly) Koszulin some literature) ifM⟨i⟩ has a linear free resolution for alli. HereM⟨i⟩
is the submodule ofM generated by its degreei partMi. Then we have

ldA(M) = min{ i | the ith syzygy ofM is componentwise linear}.

Let E =
∧⟨y1, . . . , yn⟩ be an exterior algebra. Though for a finitely generatedE-

moduleN, proj.dimE(N) = ∞ holds in most cases, in [5, Theorem 3.1] Eisenbud et
al. showed that the linearity defect of any finitely generated gradedE-module is always
finite. If n ≥ 2, then we have sup{ ldE(N) | N is a finitely generated gradedE-module} =
∞. However Herzog-R̈omer and Yanagawa proved that ifJ ⊂ E is amonomial ideal, i.e.
an ideal generated by elements of the formyi1 ∧ yi2 ∧ · · · ∧ yit , then ldE(E/J) ≤ n− 2 if
n ≥ 3 (cf. [20, 28]).

Let∆ be a simplicial complex∆ on the vertex [n] := {1, · · · ,n}. It is well known that
any monomial ideal ofE =

∧⟨y1, . . . , yn⟩ is always of the formJ∆ := (
∏

i∈F yi | F < ∆ ),
and similarly any radical monomial ideal of a polynomial ringS = K[x1, . . . , xn] can be
always written asI∆ := (

∏
i∈F xi | F < ∆ ). In fact, we have ldS(S/I∆) = ldE(E/J∆) due

to Yanagawa (see Theorem 5.16), and so we set ld(∆) := ldS(S/I∆) = ldE(E/J∆). Main
result of this thesis is the following:

Theorem 0.1.Let∆ be a simplicial complex on[n] with n≥ 4. Thenld(∆) = n−2 if and
only if ∆ is an n-gon, i.e. thegeometric realization|∆| of ∆ is homeomorphic to a circle
S1.

The organization of the thesis is as follows: Section 1 devotes to an introduction of
some definition and basic facts in commutative algebra. Most of the facts there hold in
more general condition, (e.g. over a Notherian local ring), but we restricted ourself to ar-
guments over a positively graded algebra over a fieldK. The contents of this section and
a more detailed exposition of them can be found in standard textbooks like Matsumura
[13] or Bruns-Herzog [3].

Section 2 is a brief introduction of the concept “face ring” and some basic facts. In
general, the word “face ring” can possibly contain an affine semigroup ring and so on, but
in this thesis we treat only with Stanley-Reisner rings and exterior face rings (see Section
2 for their definition). Good references for the section and more detailed discussion are
[3],[14] and [21].
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Let S be a polynomial ring over a fieldK. In [24], Yanagawa introduced the concept
of squarefreeS-modules for more systematic argument of the theory around Stanley-
Reisner rings. The greatest advantage of them is, the author guesses, that the category of
squarefreeS-modules becomes abelian with some useful properties. For example, this
property enable us to argue using sheafs or derived categories ([25],[26],[28]). On the
other hand, for an exterior algebraE overK, Römer [18] introduced the notion of square-
freeE-module as a generation of an exterior face ring, which is the exterior version of a
Stanley-Reisner ring. In Section 3, we introduce these squarefree modules, their proper-
ties, and the functors due to Römer [18] between the category of squarefreeS-modules
Sq(S) and the categorySq(E) of squarefreeE-modules, which gives an equivalence
Sq(S) � Sq(E). We also mention theAlexander dual functorgiven by R̈omer [18]. It is
a duality functor ofSq(S) which is generalization of Alexander dual.

Section 4 devotes to an introduction of the relation between squarefree modules
and Bernstein-Gel’fand-Gel’fand (abbr. BGG) correspondence, which is an equivalence
Db(modZS) � Db(modZE). Actually, by the similar way as theZ-graded case, we can
get theZn-graded version of this correspondenceDb(modZnS) � Db(modZnE), and the
functors∗R, ∗L , giving its correspondence, can be written by the composition of 2 func-
torsD ,A which have a combinatorial meaning, in the derived categoryDb(Sq(S)) (resp.
Db(Sq(E))) of Sq(S) (resp.Sq(E)), which can naturally be seen a full subcategory of
Db(modZnS) (resp.Db(modZnE)). The functors∗R, ∗L ,D ,A are very useful tools for
studying squarefree modules and related things ([26]).

BGG correspondence brings some benefits to the study of linearity defect or square-
free modules, and using them, we can deduce many properties of linearity defect and
squarefree modules ([5, 26, 28, 27]). In Section 5, we introduce the definition and some
known results about linearity defects. We also mention the relation of BGG correspon-
dence with linearity defect, properties yielded from this relation, and some important
results of [17].

In Section 6, an upper bound of ld(∆) is studied. Though we stated above that there
is a uniform bound ld(∆) ≤ n − 2 due to Herzog-R̈omer and Yanagawa, more precisely
ld(N) ≤ n for N ∈ Sq(E) (hence ld(∆) ≤ n) was shown by Herog and Römer and then
this result refined as ld(N) ≤ n−1 for N ∈ Sq(E) and ld(∆) ≤ n−2, by Yanagawa. In this
section, refining these bounds more, we give the following upper bound: forN ∈ Sq(E),

ldE(N) ≤ max{1,n− indegE(N) − 1 },

where indegE(N) := min{ i | Ni , 0 } (and the same bound holds forM ∈ Sq(S)). As a
corollary, we obtained the following bound:

ld(∆) ≤ max{ 1,n− indeg(∆) },

where indeg(∆) := indeg(I∆) = indeg(J∆). Moreover, for 2≤ t ≤ n− 2, an example of a
simplicial complex∆with indeg(∆) = t which satisfies the equality ld(∆) = n− indeg(∆),
is given.

Since there is a uniform bound ld(∆) ≤ n − 2 if n ≥ 3, it is natural to ask which
simplicial complex satisfies the equality ld(∆) = n− 2. Theorem 0.1 gives an answer for
this question. Most of Section 7 devotes to a proof of the theorem. As a by-product of
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the proof, the following lower bound is yielded:

ld(∆) ≥ max{ ♯F − dim∆F − 1 | F ⊂ [n],∆F is Gorenstein with∆ , ∅, {∅} },
where we set the value of the right hand of the inequality to be 0 if there is noF ⊂ [n]
such that∆F is Gorenstein. In the last of the section, we gave an example which indicates
that in the above lower bound the equality does not necessarily hold, and verified that
this example is indeed the required, by means of computation with the software system,
Macaulay2 [9].

In Appendix A, we give 3 programs by distinct methods which compute linearity
defects with Macaulay2, and examples of computation using them.
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1. Preliminary

In this section, we shall introduce some basic concepts and results used in this paper.
Good references for the section are [3] and [13].

Let K be a field, andRa finitely generated positively graded commutativeK-algebra
which isconencted, i.e.,R0 � K and which is generated byR1. Henceforth, throughout
this thesis, all positively gradedK-algebra are assumed to be connected and finitely gen-
erated by its component of degree 1. We denote, byModZR, the category ofZ-graded
R-modules and bymodZR the full subcategory ofModZR consisting finitely generated
Z-gradedR-modules. Following an usual convention, forM ∈ ModZR, Mi denotes the
i th-homogeneous componentof M, i.e., theK-vector spaces consisting of homogeneous
elements ofM of degreei. Thus we can write asR =

⊕
i∈N Ri and M =

⊕
i∈Z Mi

for M ∈ ModZR. Of course, a morphismf in ModZR is adegree preserving R-module
homomorphism, i.e.,R-module homomorphismf : M → N with M,N ∈ ModZR sat-
isfying f (Mi) ⊂ Ni for each i. A graded version of “Hom module” is of the form
HomR(M,N) :=

⊕
i∈Z HomModZR(M(−i),N), whereM(−i) denotes the graded module

with grading given by (M(−i)) j = M j−i. Though in general, HomR(M,N) , HomR(M,N)
for M,N ∈ ModZR, the equality holds ifM ∈ modZR (cf. [3, Exercise. 1.5.19]). Since
we deal only with modules inmodZR, we do not have to distinguish them.

For M ∈ modZR, we can construct the exact complex starts withM as follows:
choose a minimal homogeneous systemf 0

1 , · · · , f 0
b0

of generators ofM, and let the degree
of fi be d0

i for eachi. Next, let ∂0 :
⊕

i R(−d0
i ) → M be theR-homomorphism in

modZR given byR(−d0
i ) ∋ 1 7→ f 0

i , and setΩ1(M) := ker∂0. In turn choose a minimal
homogeneous systemf 1

1 , · · · , f 1
b1

with degreed1
1, · · · ,d1

b1
of generators ofΩ1(M), and

define∂1 :
⊕

i R(−d1
i ) → Ω1(M) by R(−d1

i ) ∋ 1 7→ f 1
i . Continuing this way, we obtain

the exact sequence

−→
bt⊕

i=1

R(−dt
i ) −→ · · · −→

b1⊕
i=1

R(−db1
i ) −→

b0⊕
i=1

R(−db0
i ) −→ M −→ 0. (1.1)

A complexP• : · · · → Pi
∂→ Pi−1 → · · · of R-modules is said to beminimal if it

satisfies that∂(Pi) ⊂ mPi−1 for eachi, wherem :=
⊕

i≥1 Ri is the graded maximal ideal
of R. By construction, the above sequence (1.1) is minimal.

Definition 1.1. The acyclic complex· · · →
⊕

R(−db1
i ) → R(−db0

i ) → 0, given by
truncating the above sequence (1.1), is called aminimal graded free resolutionof M, and
Ωi(M) the i th-syzygy moduleof M (in the resolution).

It is well known that a minimal graded free resolution ofM is uniquely determined up
to an isomorphism (because of our assumption ofR), and hence so is its syzygy modules.
Note that putting the same shifts together, a minimal graded free resolution ofM is of
the following form:

· · · −→
⊕
j∈Z

R(− j)βi, j (M) −→ · · · −→
⊕
j∈Z

R(− j)β1, j (M) −→
⊕
j∈Z

R(− j)β0, j (M) −→ 0.
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The integerβi(M) :=
∑

j βi, j(M) (resp. βi, j(M)) is called theith- (resp. (i, j)th-graded)
betti numberof M. The projective dimension proj.dimR(M) of M is, as is well known,
equal to max{ i | βi(M) , 0 }.

The following invariant is very important and studied well in commutative algebra:

Definition 1.2. Let M ∈ modZR. The value sup{ j − i | βi, j(M) , 0 } is called the
(Castelnuovo-Mumford) regularity of M, and denoted by regR(M). We set the regularity
of zero module to be−∞.

Regularity can be characterized by the concept “linear resolution”, which is defined
as follows:

Definition 1.3. Let M ∈ modZR. We sayM has a linear resolution ifM has a system of
generators with the same degrees, sayd, and has a free resolution of the form:

· · · −→ R(−i − d)βi,i+d(M) −→ · · ·R(−1− d)β1,1+d(M) −→ R(−d)β0,d(M) −→ 0.

Proposition 1.4. The following are equivalent: for M∈ modZR,

(1) M is q-regular, i,e.,regR(M) ≤ q;
(2) M≥q has a linear resolution, where M≥q denotes the trancated module

⊕
i≥q Mi.

WhenR is Zn-graded andM ∈ modZnR, we can construct a minimalZn-graded free
resolution ofM, similarly. Generally, it is of the form:

· · · −→
⊕
a∈Zn

R(−a)βi,a(M) −→ · · · −→
⊕
a∈Zn

R(−a)β1,a(M) −→
⊕
a∈Zn

R(−a)β0,a(M) −→ 0,

and we callβi,a(M) (i,a)th-(Zn-)graded betti number of M.

Koszul Complexes.Let L ∈ ModZR, and f ∈ HomR(L,R). For simplicity, we set∧Fx := xi1 ∧ · · · ∧ xi j for F = {i1, · · · , i j} with i1 < · · · < i j. Defining
∧t L→ ∧t−1 L by

∧Fx 7→
t∑

i=1

(−1)i+1 f (xi)
∧F\{i}x,

whereF = {1, · · · , t} andxi ∈ L for all i ∈ F, we obtain the complex

K( f ) : · · · −→
t∧

L
df−→

t−1∧
L −→ · · ·

2∧
L

df−→ L
f−→ R−→ 0.

Note that ifL is free with basise1, · · · , en, each
∧t L is also free with basis

∧Fe, where
F spans all the subsets{i1, · · · , it} ⊂ {1, · · · ,n} with i1 < · · · < it. ThusK( f ) is then a
free complex, i.e. a complex whose components are free modules.

In the above,f ∈ HomR(L,R) is arbitrary, but we need only the following case: given
a sequencex := x1, · · · , xn of elements ofRwith degreesd1, · · · ,dn respectively, we can
consider theR-linear mapf :

⊕n
i=1 R(−di) → R by the assignmentR(−di) ∋ 1 7→ x1. In

this situation, we setK(x) := K(x1, · · · , xn) to be the complexK( f ) given as above.

Definition 1.5. With the above notation, the complexK(x) is called theKoszul complex
with respect tox = x1, · · · , xn.

We can compute certain Tor-modules by Koszul complex.
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Proposition 1.6. Let x be a sequence in R consisting of homogeneous elements, and
I = (x). Then there is the isomorphism

Hi(x) := Hi(K(x)) � TorRi (R/I ,R).

The following is a criterion of the acyclicity ofK(x).

Proposition 1.7. Let R be a positively graded K-algebra,m its unique maximal ideal,
and I ⊂ m an ideal generated byx := x1, · · · xn. Then the following are equivalent:

(1) Hi(x) = 0 for all i > 0;
(2) H1(x) = 0;
(3) x is an R-regular sequence.

WhenR is a polynomial ringK[x] = K[x1, · · · , xn] with indeterminatesx1, · · · , xn

over a fieldK, x1, · · · , xn is a regular sequence, and moreover we haveR/(x1, · · · , xn) =
K. Hence in this case,K(x) gives a minimal free resolution ofK.

Corollary 1.8. If R = K[x], thenK(x) is a minimal free resolution of K.

There is an important relation between depthR M := grade(m,M), the depth ofM,
i.e. the maximal length ofM-regular sequence inm (in general depthR M ≤ dim M), and
proj.dimR M, due to Auslander and Buchsbaum:

Theorem 1.9(Auslander-Buchsbaum). Let R be a positively graded K-algebra and let
0 , M ∈ modZR. If proj.dimR M < ∞, then

proj.dimR M + depthR M = depthR R.

Let Rbe a positively gradedK-algebra. For a complexC• of gradedR-modules with
the differential map∂ and an integeri, C•[i] denotes the complex given by translating
C• by i, that is, the complex with the differential map (−1)i∂ such that the component of
homological degreej is Ci+ j.

For a homogeneous elementx of degreed, C• ⊗RK(x) gives the “mapping cone” of
the multiplication mapC•(−d)→ C• by x, that is, the following holds:

Proposition 1.10. Let R, x be as above. For every complex C• of graded R-modules,
there exists an exact sequence

0 −→ C• −→ C• ⊗RK(x) −→ C•(−d)[−1] −→ 0,

which induces the long exact sequence of homology

· · · −→ Hi(C•) −→ Hi(C• ⊗RK(x)) −→ Hi−1(C•(−d))
x−→ Hi−1(C•) −→ · · · .

Moreover, if x is regular on Ci for each i, then there is an isomorphism H•(C•⊗RK(x)) �
H•(C•/xC•).

Local Cohomologies.Let R be a positively gradedK-algebra, andm be its unique
graded maximal ideal. ForM ∈ modZR, we defineH i

m(M) := lim−−→ExtiR(R/mk,M).

H i
m(M) is naturallyZ-graded.

Definition 1.11. H i
m(M) is called theith-local cohomology of M.

Local cohomology is a useful tool to compute dimension and depth:
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Theorem 1.12(Grothendieck). For M ∈ modZR, we have
(1) H i

m(M) , 0 for i = dim M,depthR M;
(2) H i

m(M) = 0 unlessdepthR ≤ i ≤ dim M.

Recall the definition of “Cohen-Macaulayness”.

Definition 1.13. M ∈ modZR is said to beCohen-Macaulay of dimension dif d =
depthR M = dim M.

Now we can characterize Cohen-Macaulayness in terms of local cohomology.

Proposition 1.14. M is Cohen-Macaulay of dimension d if and only if Hi
m(M) = 0 for

i , d.

Definition 1.15. Let R be a Cohen-Macaulay positively gradedK-algebra of dimension
d. A finitely generated gradedR-moduleC ∈ modZR is called acanonical module,
denoted byωR, of R if there exist isomorphisms

ExtiR(K,C) �

0 for i , d;

K for i = d,

in modZR.

It is well known that a canonical module is uniquely determined up to isomorphisms
in modZR.

Example 1.16.Let S be a polynomial ringK[x1, · · · , xn]. ThenωS = S(−n). Actually,
ωS is Zn-graded, and it follows thatωS � S(−1), where1 := {1, · · · ,1} ∈ Zn.

Another important property of local cohomology is the local duality:

Theorem 1.17(local duality). Let R be a positively graded K-algebra with R0 = K, and
let M ∈ modZR. Then for all i, there are natural isomorphisms

HomK(H i
m(M),K) � Extd−i

R (M, ωR).

Specific rings.Let R be a positively gradedK-algebra andm its unique maximal
ideal. Besides Cohen-Macaulayness, there is the various important concept of rings or
modules. Of them, we shall recall the definition of Buchsbaumness and Gorensteinness.

Definition 1.18. M ∈ modZR is said to beBuchsbaumif every system of parameters is
weeklyM-sequence. A positively gradedK-algebraR is also said to beBuchsbaumif R
itself is Buchusbaum as a gradedR-module.

Definition 1.19. R is said to beGorensteinif inj .dimR R< ∞.

There is the following hierarchy:

Theorem 1.20.R is a polynomial ring⇒ R is Gorenstein⇒ R is Cohen-Macaulay⇒ R
is Buchsbaum.

For Gorensteinness, there are famous criterion:

Proposition 1.21. Let R be Cohen-Macaulay with canonical moduleωR. Then the fol-
lowing are equivalent:
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(1) R is Gorenstein;
(2) ωR � R(a) for some a∈ Z.

The following criterion is also well known:

Theorem 1.22(Auslander-Buchsbaum-Serre). For a positively graded K-algebra R, the
following are equivalent:

(1) R is a polynomial ring;
(2) proj. dimR M < ∞ for all M ∈ modZR;
(3) proj. dimR K < ∞.

This theorem yields the finiteness of regularities of finitely generated graded modules
over a polynomial ring, as a corollary.

Corollary 1.23. If R is a polynomial ring, thenregR(M) < ∞ for all M ∈ modZR.

Proof. SinceM ∈ modZR andR is Noetherian, its syzygiesΩi(M) are all finitely gener-
ated for alli ≥ 0. Moreover the above theorem ensures that proj.dimR(M) < ∞. Hence
all βi, j(M) vanishes, expect for finitely manyi, j, so that we have the required. �

Let R be a positively gradedK-algebra withR0 = K. Then we can writeR = S/I ,
whereS := K[x1, · · · , xn] is a polynomial ring over a fieldK, andI is a graded ideal of
S. If R is Gorenstein, then there is a symmetry of the graded betti numbers ofR as a
gradedS-module. This symmetry can be inferred from the following proposition:

Proposition 1.24. If R is Cohen-Macaulay with the above notation, then the following
holds;

(1) ωR � ExttS(R, ωS), where t= n− dimR;
(2) there is a minimal graded free S -resolution P• : 0 → Pt → · · ·P1 → P0 → 0

of R, where t= n − dimR, andHomS(P•, ωS) : 0 → HomS(P0, ωS) →
HomS(P1, ωS) → · · · → HomS(Pt, ωS) → 0 is a minimal graded free S -
resolution ofωR (Note that by Example 1.16HomS(Pi , ωS) is indeed free).

By Example 1.16, Proposition 1.21, and the above Proposition, we have:

Proposition 1.25.Let R,S, I be as above. Assume that R is Gorenstein, and let

P• : 0 −→ Pt −→ · · · −→ P1 −→ P0 −→ 0 (∗)
be a minimal graded free S -resolution of R with t= n − dimR and Pt =

⊕r
i=1 S(−ai).

We set a:= max{ai | 1 ≤ i ≤ r }. ThenHomS(P•,S)(−a) is also a minimal graded free
resolution of R. In particular, we haveβi, j(M) = βt−i,a− j(M).

Proof. We denote HomS(Pi ,S) by P̃i. Proposition 1.24 ensures the existence of a min-
imal graded free resolution as (∗), and moreover in conjunction with Example 1.16,
implies that 0→ P̃0(−n) → P̃1(−n) → · · · → P̃t(−n) → 0 is a minimal graded free
resolution ofωR. On the other hand, in our condition it follows that−min{ i | [ωR] i ,
0 } = −n + a (cf [3, Example 3.6.15]), and so we haveωR � R(−n + a), by Proposition
1.21. Therefore shifting the above resolution ofωR by n− a, we have the former of the
required assertions. The second is an easy consequence of the former. �



2. FACE RINGS 11

2. Face Rings

There is a new branch, called “combinatorial commutative algebra”, of commuta-
tive algebra created by Hochster and Stanley in the middle of 1970’s. In this theory, a
”(symmetric) face ring” (usually called a Stanley-Reisner ring now), which is a quotient
ring of a polynomial ring by a “squarefree” ideal, has been one of the central algebraic
object ([3], [14], [21]), and recently, its exterior version, a “exterior face ring”, has come
to be studied by several authors ([1], [2], [18], [19]). This section is devoted to a brief
introduction to symmetric and exterior face rings.

First, we shall recall the definition and notation of a simplicial complex and some
related things:

Definition 2.1. For a finite set [n] := {1, · · · ,n}, an (abstract) simplicial complex∆ on the
vertex set[n] is a subset of the power set 2[n] of [n] with the property thatF ⊂ G,G ∈ ∆
implies thatF ∈ ∆. (We do not assume that{i} ∈ ∆ for eachi ∈ ∆.)

An elementF ∈ ∆ is called aface of∆, and itsdimensiondimF is defined to be
♯F − 1, where♯F denotes the cardinality ofF. Note that we distinguish theempty
simplicial complex∆ = {∅}, i.e. the simplicial complex with the only face∅(∈ 2[n]),
from thevoidsimplicial complex∆ = ∅, i.e. the simplicial complex without faces. Thus
the empty set∅(∈ 2[n]) is a face of any non-void simplicial complex of dimension−1.
The dimension dim∆ of ∆ is defined to be max{dimF | F ∈ ∆}, and a faceF ∈ ∆ with
dimF = dim∆ is called afacet. We set the dimension of the void simplicial complex to
be−∞.

Let K be a field,S := K[x1, · · · , xn] a polynomial ring over a fieldK, andE :=∧⟨y1, · · · , yn⟩ an exterior algebra overK. Throughout this thesis, we henceforth fix the
notations and follows the below convention:

Notation 2.2. For F := {i1, · · · , i t} ⊂ [n] with i1 < · · · < it, we setxF :=
∏

i∈F xi and∧Fy := yi1 ∧ · · · ∧ yit , we often identifyF with the vector
∑

i∈F ei ∈ Zn whereei :=
{0, · · · ,0,1,0, · · · ,0} denotes theith unit vector. (e.g.MF = M{1,0,0,1,0,1} for M ∈ modZnS
andF = {1,4,6} ∈ [6]).

Associating with a simplicial complex∆ on [n], we can construct an ideal ofS and
E respectively as follows:

I∆ := ( xF | F < ∆ ) ⊂ S and J∆ := (
∧Fy | F < ∆ ) ⊂ E,

which we call the(symmetric) face(or Stanley-Reisner) ideal of∆ and theexterior face
ideal of∆. Face rings are quotient rings ofS or E by these ideals. We setI∆ = S (resp.
J∆ = E) if ∆ is void, andI∆ = 0 (resp.J∆ = 0) if ∆ is the simplex 2[n].

Definition 2.3. We callK[∆] := S/I∆ the (symmetric) face(or Stanley-Reisner) ring of
∆ overK, andK⟨∆⟩ := E/J∆ theexterior face ringof ∆ overK.

Remark2.4. As is stated in the beginning of this section, it is most popular to callK[∆]
(resp.I∆) Stanley-Reisner rings (resp. ideals), but we intentionally defined by the name
“symmetric” face rings (resp. ideals) in contrast with “exterior” ones. But the reader
should note that exterior face rings (or ideals) is called otherwise in some literature; they
are also called “indicator algebra”, or “exterior Stanley-Reisner rings”, and so on.
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Recall an idealI (resp.J) of S (resp.E) is called amonomial idealif it is generated
by elements of the formxF (resp.

∧Fy) for someF ⊂ [n].
The following is one of the most important reasons for the study of face rings:

Proposition 2.5. Anysquarefreeideal of S , i.e. a monomial radical ideal, can be written
as I∆ for some∆, and similarly, any monomial ideal of E as J∆ for some∆.

Thus the study of face ideals means the study of squarefree ideals ofS or monomial
ones ofE.

Example 2.6. Let ∆ be a simplicial complex on [5]= {1, · · · ,5} consists of the shell of
a tetrahedron and a triangle as follows:

;;;;;;;;;;;

������������

%%%%%%%%%%%%%%
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fffffffffffffff

•
XXXXXXXXXXX
•

Then the facets of∆ are{1,2,3}, {1,3,4}, {2,3,4}, {1,2,4}, {3,4,5}, and dim∆ = 2. The
symmetric face ideal and exterior one areI∆ = (x1x5, x2x5, x1x2x3x4) and J∆ = (y1 ∧
y5, y2 ∧ y5, y1 ∧ y2 ∧ y3 ∧ y4)

For a simplicial complex∆ on [n], the following 2 operators are elementary: thestar
st∆ F := {G ∈ ∆ | F∪G ∈ ∆} of F in ∆ and thelink lk∆ F := {G ∈ ∆ | F∪G ∈ ∆, F∩G =
∅ } of F in ∆.

Example 2.7.Let∆ be a simplicial complex as in Example 2.6, and setF := {1,3}, v :=
{3}. Then st∆ F consists of two triangles{1, 2,3}, {1, 3,4}, and lk∆ v of the edge{4,5} and
the frame of the triangle{1,2, 4}.

;;;;;;;;;;;

������������

%%%%%%%%%%%%%%
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;;;;;;;;;;;

•������������ •
XXXXXXXXXXX
•

For a simplicial complex∆ on [n], consider the subset∆∨ of 2[n] consisting ofF ⊂ [n]
with Fc := [n] \ F < ∆, and thus∆∨ = { F | Fc < ∆ }. Then it is easy to verify that it is
again a simplicial complex. We call this simplicial complex theAlexander dualof ∆.
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Example 2.8. The Alexander dual of the simplicial complex given in Example 2.6 con-
sists of two triangles{1,3,4}, {2,3,4} and the vertex{5}:

1

2

3

4 5
c c c c c c c c
•

cccccccccc

SSSSSSSSSSS

•

�������

•

;;;;;;;;;;;

•

%%
%%
%%
%%
%%
%%
%%

•
•

The name “dual” comes from the following duality:

Proposition 2.9 (Alexander’s duality). Let K be a field, andΓ ⊂ ∆ ⊂ 2[n] simplicial
complexes. Then we have

H̃i(∆,Γ; K) � H̃n−2−i(Γ∨,∆∨; K) � H̃n−2−i(Γ
∨,∆∨; K),

for all i, and in particular, H̃i(∆; K) � H̃n−3−i(∆∨; K) � H̃n−3−i(∆∨; K).

Given a simplicial complex∆ on [n] and its faceF ⊂ [n], we denote, by∆F, the
restriction to Fof ∆ which are defined as∆F := {G ∈ ∆ | G ⊂ F }.
Proposition 2.10.Let∆ be a simplicial complex on[n]. Then it follows that

H̃ i−2(lk∆∨ F; K) � H̃♯Fc−i−1(∆Fc ; K)

for all F ∈ ∆∨.
We can compute the dimensions of face rings combinatorially.

Proposition 2.11. Let∆ be a simplicial complex on[n]. For F ⊂ [n], we setpF := (xi |
i < F) ⊂ S . Then we haveAss(K[∆]) = { pF | F is a facet of∆ }. In particular, we have
dimK[∆] = dim∆ + 1.

For a propertyP of rings, it is customary that the condition that the face ringK[∆]
of a simplicial complex∆ possesses the property is expressed by saying “∆ hasP”. For
instance, we say∆ is Cohen-Macaulay (overK) if so is K[∆]. (Though most proper-
ties we will deal with may depend on the fieldK, we omit the word ”overK” unless
necessity). Henceforth, we tacitly follows this custom.

The ith skeleton∆(i) of a simplicial complex∆ is the subcomplex of∆ defined by
{ F ∈ ∆ | dimF ≤ i }. The depth ofK[∆] can be calculate by investigating whether their
skeletons are Cohen-Macaulay or not.

Proposition 2.12.We havedepthS(K[∆]) = max{ i | ∆(i) is Cohen-Macaulay} + 1.

The following formula, due to Hochster, is well known, but in Section 7, we need
explicit correspondence between [Tor•

S(K[∆],K)]F and reduced cohomologies of∆F, and
so we will introduce its proof.

Theorem 2.13(Hochster). For a simplicial complex∆ on [n], it follows thatβi,F(K[∆]) =
dimK H̃♯F−i−1(∆F; K), and hence that

βi, j(K[∆]) =
∑

F⊂[n],♯F= j

dimK H̃ j−i−1(∆F; K),
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whereβi, j(K[∆]) is theZ-graded betti number of K[∆].

Proof. Let K• := K(x1, · · · , xn) = S ⊗K
∧

S1 be the Koszul complex with respect to
x1, . . . , xn. Note that by Corollary 1.8K(x1, · · · , xn) is a minimal graded free resolution
of K. Then we have

[Tori
S(K[∆],K)]F = Hi([K[∆] ⊗S K•]F) = Hi(

[
K[∆] ⊗K

∧
S1
]
F)

for F ⊂ [n]. Furthermore, the basis of theK-vector space [K[∆]⊗K
∧

S1]F is of the form
xG ⊗∧F\Gx with G ∈ ∆F. Thus the assignment

φi : C̃i−1(∆F; K) ∋ e∗G 7−→ (−1)α(G,F)xG ⊗∧F\Gx ∈ [K[∆] ⊗K

∧
S1]F

with G ∈ ∆F gives the isomorphismφ• : C̃•(∆F; K)[−1] −→ [K[∆] ⊗K
∧

S1]F of chain
complexes, wherẽCi−1(∆F; K) is the (i − 1)st term of the augmented cochain complex
of ∆F over K, eG is the basis element of̃Ci−1(∆F; K) corresponding toG, ande∗G is the
K-dual base ofeG. Here we setα(A, B) := ♯{ (a,b) | a > b,a ∈ A,b ∈ B } for A, B ⊂ [n].
Thus we have the isomorphism

φ̄ : H̃ i−1(∆F; K) −→ [Tor♯F−i
S (K[∆],K)]F , (2.1)

and hence the assertion follows. �

There are the well-known criteria of Cohen-Macaulayness, Buchsbaumness, and
Gorensteinness of simplicial complexes.

Theorem 2.14(Reisner). Let∆ be a simplicial complex on[n]. The following are equiv-
alent:

(1) ∆ is Cohen-Macaulay over K;
(2) H̃i(lk∆ F; K) = 0 for all F ∈ ∆ and all i < dim lk∆ F.

Theorem 2.15.For a simplicial complex∆ of dimension d− 1, the following are equiv-
alent:

(1) ∆ is Buchsbaum;
(2) ∆ is pure and K[∆]p is Cohen-Macaulay for all prime idealsp , m;
(3) H i

m(K[∆]) has finite length for all i< d;
(4) H i

m(K[∆])a = 0 for all a , 0 and i< d;
(5) H̃i(lk∆ F; K) = 0 for all ∅ , F ∈ ∆ and all i < dim lk∆ F;
(6) H i

m(K[∆]) � H̃i−1(∆; K) for all i < d.

As a corollary, the above criterion of Buchsbaumness yields the following:

Corollary 2.16. If ∆ is a manifold, then∆ is Buchsbaum.

Let ∆ be a simplicial complex on [n]. We set core[n] := { i ∈ [n] | st∆ i , ∆ },
and call the simplicial complex∆core[n] the core of∆. Since any∆ can be written as
∆ = ∆core[n] ∗ 2[n]\core[n], we haveK[∆] � K[∆core[n]] ⊗ K[[n] \ core[n]] � K[∆core[n]][ xi |
i ∈ [n] \ core[n]], and hence∆ is Gorenstein if and only if so is∆core[n].

Theorem 2.17.Given a simplicial complex∆ , ∅, the following are equivalent:

(1) ∆ is Gorenstein over K;
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(2) for all F ∈ ∆core[n], we have

H̃i(lkcore∆ F; K) �

K if i = dim lk∆core[n] F,

0 if i < dim lk∆core[n] F.

Definition 2.18. A simplicial complex∆ is said to beGorenstein*if ∆ is Gorenstein and
core[n] = [n].

Example 2.19.Clearly,∆core[n] is Gorenstein*. Moreover, a simplicial complex∆ whose
geometric realization|∆| is homeomorphic to the (d − 1)-dimensional sphereSd−1 (for
m > d there indeed exists a triangulation ofSd−1 with m vertices (cf. [3, Proposition
5.5.10]), is Gorenstein*.

Since it is known thatH̃i(lk∆ F; K) is a topological invariant of|∆| for F ∈ ∆, we can
deduce from these criteria that Cohen-Macaulayness, Buchsbaumness, and Gorenstein-
ness* are a topological properties. But we should note that their property may depends
on the fieldK. We complete this section by presenting the famous example which shows
Cohen-Macaulayness may depend on the fieldK.

Example 2.20.Consider the triangulation of the real projective planeP2R with 6 ver-
tices as follows:





11111111

.

.111111111111

.

.






.1
11

11
11

11
11

1

.



@@@@@@@@@

•

VVVVVVVVV
•

��
��
��
��
�

•

yyyyyyyyyyyyy

•

''
''
''
''
'

•

hhhhhhhhh
•

SSSSSSSSSSSSS

•

~~~~~~~~~

•

$$
$$
$$
$$
$$
$$
$

•

12

3

1 2

3

6

4 5

SinceP2R is connected, we havẽH0(∆; K) = 0, but

H̃1(∆; K) =

K if charK = 2;

0 otherwise.

ThusK[∆] is Cohen-Macaulay if charK , 2, but is not if charK = 2.
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3. SquarefreeModules

In [24], Yanagawa introduced the concept of “squarefreeS-modules” to study face
rings more systematically, and indicated, indeed, that many properties of face rings can
be lifted up to this framework. Moreover, he gave some interesting results by means
of this concept ([24, 25, 26]). On the other hand, R̈omer defined their exterior version,
“squarefreeE-modules”, and detected, by means of the result of Aramova, Aramov, and
Herzog ([1]), that there is an equivalence between the category consisting of squarefree
S-modules and that of squarefreeE-modules. Moreover, by use of these tools, he defined
the “generalized Alexander duality functor”, which is a generalization of Alexander du-
ality. Our goal in this section is the brief introduction of these concepts. The interested
reader should refer to the series of Yanagawa’s paper [24, 25, 26], and R̈omer’s [18, 19].

Throughout this section,S,E denote a polynomial ringK[x1, · · · , xn] over a fieldK
and an exterior algebra

∧⟨y1, · · · , yn⟩, respectively.

Definition 3.1. [24] A finitely generated graded moduleM ∈ modZnS is said to be
squarefreeif it is Nn-graded, i.e.,M =

⊕
a∈N Ma and satisfies that the multiplication

mapMa ∋ m 7→ mxb ∈ Ma+b is bijective whenever supp(a+ b) = supp(a).

For example, every face rings and ideals are squarefree.
This definition is equivalent to say thatM has a finite presentation of the form:⊕

G⊂[n] S(−G) →
⊕

F⊂[n] S(−F) → M, whence in particular any squarefree module
is finitely generated by its squarefree components.

By Sq(S), we denote the category consisting of squarefreeS-modules and degree
preserving maps inmodZnS. Sq(S) enjoys many nice properties, which enable us to
study them and face rings, systematically.

Proposition 3.2. [24] Sq(S) is an abelian category, and has enough projectives and
enough injectives. An indecomposable projective (resp. injective) module inSq(S) is
isomorphic to S(−F) (resp. S/pF) for some F⊂ [n].

The followings are immediate consequence of the above Proposition and the fact that
HomS(S(−F), ωS) = S(−Fc).

Corollary 3.3. [24] For M ∈ Sq(S), its syzygy moduleΩi(M) andExtiS(M, ωS) ∈ Sq(S)
is again squarefree for all i≥ 0.

Definition 3.4. [18] A finitely generated graded moduleN ∈ modZnE is said to be
squarefreeif Na = 0 for all non-squarefreea ∈ Zn, i.e.,N =

⊕
F∈[n] NF.

Exterior face ringsK⟨∆⟩ and monomial idealsJ∆ are squarefree.
Let us denote, bySq(E), the category consisting of squarefreeE-modules and degree

preserving maps inmodZnE. Then it is clear thatSq(E) is abelian.

Now we shall construct the functorE andSgiving a equivalence betweenSq(S) and
Sq(E). Before that, The notation below is convenient: For monomialsu, v ∈ E with
supp(v) ⊂ supp(u), there is a unique monomialw ∈ E such thatu = vw; then we set
v−1u := w. For monomialsu, v,w ∈ E, the following hold whenever the expressions can
be defined: (v−1u)w = v−1(uw) and (w−1v)(v−1u) = w−1u.
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Well, we set about the construction. Let (P•, ∂) be a free complex inSq(S). Then
each free modulePi has a basisBi such that deg(f ) ∈ Nn is squarefree. Fora ∈ Nn and
f ∈ Bi, we regardy(a) f as a symbol with deg(ya f ) = a + deg(f ). let Q j ∈ modZnE be
theNn-graded freeE-module with basisy(a) f wherea ∈ Nn, f ∈ Bi, supp(a) ⊂ supp(f ),
and j = ♯a+ i. Note that forf ∈ Bi, ∂( f ) can be written as∂( f ) =

⊕
g∈Bi−1

λgxF−Gg with
λg ∈ K, F = deg(f ), andG = deg(g). By using this expression, define two morphisms
η j , ξ j : Q j → Q j−1 as follows:

η j(ya f ) = (−1)♯F
⊕

k∈supp(a)

ya−ek f yk, and ξ j(ya f ) = (−1)♯a
⊕
g∈Bi−1

yagλg(
∧Gy)−1∧Fy.

We setδ := η + ξ. Then it can be easily verified that (Q•, δ) forms a complex ofNn-
graded free modules. By the construction, the complex (Q•, δ) may depend on the choice
of basisBi, but in fact it is uniquely determined up to isomorphisms of complexes:

Proposition 3.5. [1] Let (Q′•, δ
′) be the complex obtained from basis B′i . Then we have

(Q•, δ) � (Q′•, δ
′) as complexes ofNn-graded modules.

Since each component of a minimal graded free resolution ofM ∈ Sq(S) is again in
Sq(S), we can apply the above construction toP•.

Theorem 3.6. [1, 18] Let M ∈ Sq(S) and (P•, ∂) its minimal graded free resolution. If
we apply the above construction to(P•, ∂), then the resulting complex(Q•, δ) is also a
minimalNn-graded free E-resolution ofcoker(δ1 : Q1→ Q0) ∈ Sq(E).

Now we can define the functorE : Sq(S)→ Sq(E): for M ∈ Sq(S) and its minimal
graded free resolution (P•, ∂), setE(M) := coker(δ1), whereδ is the differential of the
complex (Q•, δ) obtained fromP•.

We shall set about the inverse ofE. Let N ∈ Sq(E), (Q′•, δ) a minimal graded free
resolution ofN, Bi the basis ofQi, and setB̄i := { f ∈ Bi | deg(f ) is squarefree}.
Then we define the complex (P•, ∂) of Nn-graded freeS-modules as follows: letPi

be a graded free module with basis̄Bi, and whenf ∈ B̄i can be written asδ( f ) =⊕
g∈B̄i−1

gλg(
∧Gy)−1∧Fy with F = deg(f ), G = deg(g), andλg ∈ K, we set

∂i( f ) =
⊕
g∈B̄i−1

gλgxF−G.

It is a routine to check that (P•, ∂) is indeed a complex.

Theorem 3.7. [18] Let N ∈ Sq(E), and(Q′•, δ) its minimal graded free resolution. Then
the complex(P•, ∂) obtained by the above construction is also a minimalNn-graded free
S -resolution ofcoker(∂1 : P1→ P0) ∈ Sq(S).

The functorS : Sq(E) → Sq(S) is now defined by assigningN ∈ Sq(E) to S(N) :=
coker(∂1) where∂ is the differential of the complex (P•, ∂) obtained from (Q•, δ).

Proposition 3.8. [18] The functorsSandE are additive covariant exact functors giving
an equivalenceSq(S) � Sq(E).

The following helps us grasp the properties of these functors: ForM ∈ Sq(S), N ∈
Sq(E), and simplicial complexesΓ ⊂ ∆, we have
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(1) E(M)F = MF for all F ⊂ [n];
(2) S(N)F = NF for all F ⊂ [n];
(3) E(IΓ/I∆) = JΓ/J∆;
(4) S(JΓ/J∆) = IΓ/I∆.

We setDE := HomE(−,E). Then it is a contravariant functor frommodZnE to itself,
and moreover sinceDE(N) ∈ Sq(E) for N ∈ Sq(E), it is a contravariant functor from
Sq(E) to itself. It is known thatDE is exact (see [2]). The following hold: for simplicial
complexesΓ ⊂ ∆,

(1) DE(JΓ/J∆) = J∆∨/JΓ∨ ;
(2) in particular,DE(K⟨∆⟩) = J∆∨ .

Definition 3.9. [18] DE(N) is called the(generalized) Alexander dualof N ∈ Sq(E).

Composing the functorsE, S, and DE, we obtain the contravariant exact functor
A := S◦ DE ◦ E : Sq(S)→ Sq(S). Clearly, for simplicial complexesΓ ⊂ ∆, we have

(1) A(IΓ/I∆) = I∆∨/IΓ∨ ;
(2) in particular,A(K[∆]) = I∆∨.

Definition 3.10. [18] For M ∈ Sq(S), we callA(M) the(generalized) Alexander dualof
M, andA theAlexander duality functor.

There is the following beautiful equation.

Proposition 3.11([20, 23]). For M ∈ Sq(S), we haveregS(M) = proj.dimS(A(M)).

As a corollary, we have the following, which is a generalization of the following
result due to Eagon and Reiner.

Corollary 3.12. [7, 20] Let M ∈ Sq(S). Then M is Cohen-Macaulay⇐⇒ A(M) has a
linear resolution.
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4. BGG Correspondence and SquarefreeModules

We denote byDb(C) the derived category of bounded cochain complexes in a cate-
goryC. Here we do not mention details of derived categories. We refer the reader to [8]
for them. In this section, we introduce BGG correspondence, which is an equivalence
Db(modZS) � Db(modZE), and its relation to squarefree modules.

Let M ∈ modZS. For eachi, HomK(E,Mi) has anZ-gradedE-module structure
whose multiplication is given by (a f)(y) = f (ya) for a, y ∈ E and f ∈ HomK(E j ,Mi),
and whose grading by [HomK(E,Mi)]p = HomK(Ei−p,Mi). We define the functorR from
modZS to the categoryCom(modZE) of cochain complexes inmodZE as follows: We set
the part of cohomological degreei of R(M) to be HomK(E,Mi) � E(n − i)dimK (Mi ) and
define the differential mapϕ : R(M)i → R(M)i+1 by

HomK(E,Mi) ∋ f 7−→ (z 7→
∑

i

xi f (yiz)) ∈ HomK(E,Mi+1).

We can lift upR to the functor from the categoryCom(modZS) of cochain complexes
in modZS to Com(modZE) as follows: For a cochain complexM• in modZS with a
differential map∂M• , we assignR(M•) to the total complex of a double complex such
thatR(M•)i, j := HomK(E,Mi

j), its vertical differentialψ is given byψ( f ) = ∂M• ◦ f for
f ∈ R(M•)i, j, and its horizontal one byϕ. Thus the differential ofR(M•) is given by

R(M•)i ⊃ HomK(E,Mi
j) ∋ f 7−→ ϕ( f ) + (−1)iψ( f ) ∈ R(M•)i+1.

The gradings ofR(M•) is given by

R(M•)p
q :=

⊕
p=i+ j,q=−l− j

HomK(El ,M
i
j).

Next, we shall construct the functorL : Com(modZE) → Com(modZS). Let N• be
a complex inmodZE with a differential map∂N• . Then we defineL (N•) to be the total
complex of the double complex such thatL (N•)i, j := S ⊗K Ni

j and the differential maps
L (N•)i → L (N•)i+1 are defined by

L (N•)i ⊃ S ⊗K Ni
j ∋ w⊗ z 7−→

n∑
k=1

(xkw) ⊗ (ykz) + (−1)i(w⊗ ∂N•(z)) ∈ L (N•)i+1.

The gradings ofL (N•) is given by

L (N•)p
q :=

⊕
p=i+ j,q=l− j

Sl ⊗K Ni
j .

We can compute homologies ofR,L .

Proposition 4.1([5, 28]). For M ∈ modZS and N∈ modZE, we have

(1) TorSi (K,M) j � H j−i(R(M))− j;
(2) ExtiE(K,N) j � H j−i(L (N))− j.

We can compute the regularity of givenM ∈ modZS with R.

Corollary 4.2. regS(M) = max{ i | H i(R(M)) , 0 }.
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Proposition 1.23 and Corollary 4.2 implies that forM ∈ modZS, R(M) has finitely
many non-vanishing cohomologies. SinceR preserves quasi-isomorpshims, it induces
a covariant functorDb(modZS) → Db(modZE), which we denote byR. As for L , it is
clear thatL (N) has finitely many non-vanishing cohomologies. SinceL also preserves
quasi-isomorphisms, it induces a covariant functorDb(modZE) → Db(modZS) as well,
which we denote byL .

Theorem 4.3(BGG correspondence [5]). The above functorsR,L give an equivalence
Db(modZS) � Db(modZE).

A Zn-graded moduleM is regarded as aZ-graded one byMi :=
⊕
||a||=i Ma, where

||a|| := a1 + · · · + an, and moreover the functorsR (resp.L ) takes a complex inmodZnE
(resp. modZnS) to one inmodZnS (resp. modZnS), where the gradings are given as
follows:

R(M•)p
q :=

⊕
p=i+||b||,q=−a−b

HomK(Ea,M
i
b) and L (N•)p

q :=
⊕

p=i+||b||,q=a−b

Sa ⊗K Ni
b

for M• ∈ Com(modZnS) and N• ∈ Com(modZnE). When we thus treatR,L as the
functors betweenCom(modZnS) andCom(modZnE), we write∗R (resp.∗L ) for R (resp.
L ).

∗R, ∗L induces the functors∗R, ∗L giving theZn-graded version of BGG correspon-
dence.

Theorem 4.4(Zn-graded version of BGG correspondence [26]). There is an equivalence
Db(modZnS) � Db(modZnE).

Let ∗R1 (resp.∗L−1) be the functor given by shifting∗R (resp.∗L ) by 1 = {1, · · · ,1}
(resp.−1) respectively. That is, we set∗R1(M•)i, j = HomK(E(−1),Mi

j) for M ∈ modnZS
and ∗L−1(M)i, j = S(−1) ⊗K Ni

j. We denote, by∗R1 (resp. ∗L−1), the functor from
Db(modZnS) (resp.Db(modZnE)) to Db(modZnE) (resp.Db(modZnS) which is induced
by ∗R1 (resp.∗L−1).

Let us useR to denoteS or E for simplicity. We denote, byDb
Sq(R)(modZnR), the full

subcategory ofDb(modZnR) consisting of objectsM• ∈ Db(modZnR) such thatHi(M•) ∈
Sq(R) for all i.

Proposition 4.5 ([26]). There exist natural equivalenceDb(Sq(S)) � Db
Sq(S)(modZnS)

andDb(Sq(E)) � Db
Sq(E)(modZnE).

ThusDb(Sq(S)) (resp.Db(Sq(E)) can be regard as a full subcategory ofDb(modZnS)
(resp.Db(modZnE).

Next, we shall construct a functor fromDb(Sq(S)) to itself. For M ∈ Sq(S), we
defineD(M) to be the complex

D(M) : 0 −→ D(M)−n −→ D(M)−n+1 −→ · · · −→ D(M)0 −→ 0,

D(M)i :=
⊕

F⊂[n],♯F=−i

(MF)∗ ⊗K (S/pF),
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where we set (−)∗ := HomK(−,K), the degree (MF)∗ is 0 := {0, · · · ,0}, and the differen-
tial mapφ : D(M)−i → D(M)−i+1 is the sum of the maps

(−1)α(F,i) · (x j)
∗ ⊗K nat : (MF)∗ ⊗K S/pF −→ (MF\{ j})

∗ ⊗K S/pF\{ j}

with ♯F = i, where (x j)∗ denotes theK-dual of the multiplication mapxj : MF\{ j} ∋
m 7→ mxj ∈ MF and “nat” the natural surjective mapS/pF → S/pF\{ j}. Then we lift
up D to a functor fromComb(Sq(S)) to itself as follows: forM• ∈ Comb(Sq(S)) with
a differential mapδ, we setD(M•)t :=

⊕
i− j=t D(M j)i =

⊕
−♯F− j=t(M

j
F) ⊗K S/pF, and

define the differential map by

D(M•)t ⊃ (M j
F) ⊗K S/pF ∋ m⊗ x 7−→ φ(m⊗ x) + (−1)t(δ∗(m) ⊗ x) ∈ D(M)t+1,

whereδ∗ is theK-dual ofδ. D induces a contravariant functor fromDb(Sq(S)) to itself,
which we also denote byD .

The homology ofD is an Ext module.

Proposition 4.6([26]). For M ∈ Sq(S), we have Hi(D(M)) = Extn+i
S (M, ωS).

Moreover,D is a duality ofDb(Sq(S)).

Proposition 4.7([26]). It follows thatD ◦D � idDb(Sq(S))

The functorsE,S,A,DE, introduced in the previous section, also induces a functor
between derived categories; for example,E induces a covariant functor fromDb(Sq(S))
toDb(Sq(E)). We denote the functors induced likewise byE ,S A ,DE, respectively.
Remark4.8. D has the following strange property [26]: we have

D ◦A ◦D ◦A ◦D ◦A � T 2n,

whereT i is a translation functor which assign a complexM• ∈ Comb(modZS) with
the differentialδ to the complex whose part of cohomological degreej is Mi+ j and the
differential is given by (−1)i · δ.

We can describeL with D andA .

Proposition 4.9 ([26]). Let N• ∈ Comb(Sq(E)). Then∗L−1(N•) ∈ Comb(Sq(S)) and
henceL gives a functor fromDb(Sq(E)) toDb(Sq(S)). Moreover it follows that∗L−1 ◦
E (M•) = A ◦D(M•) for M• ∈ Comb(Sq(S)).

Since a freeE-moduleE(−a) is squarefree if and only ifa = 0, ∗R1(M•) is not a
complex of squarefreeE-module. However the following holds:

Proposition 4.10([26]). ∗R1(M•) ∈ Db
Sq(E)(modZnE) � Db(Sq(E)) for M• ∈ Db(Sq(S)),

and hence∗R1 gives a functor fromDb(Sq(S)) to Db(Sq(E)). Moreover we have a
natural equivalenceS ◦ ∗R1 � D ◦A .
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5. Linearity Defects

Let R =
⊕

i∈N Ri be a positively graded (not necessary commutative) Noetherian
K-algebra. (Recall the assumption, in the beginning of Section 1, that all the positively
gradedK-algebra are connected and generated by their component of degree 1.) We say
R is Koszulif K has a linear resolution. A polynomial ring and an exterior algebra are
typical examples of a Koszul algebra. Henceforth all the positively gradedK-algebra are
assumed to be Koszul.

Let M ∈ modZR and P• a minimal graded free resolution ofM. Then erasing all
terms of degree≥ 2 from the matrices representing of the differential maps ofP•, we
obtain the new complex lin(P•) such that lin(P•)i = Pi.

Definition 5.1 (Eisenbud et.al [5]). With the above notation, we call lin(P•) the linear
part of P•.

“Linearity defect” is the value indicating when a minimal graded free resolution be-
gins to predominated by its linear part.

Definition 5.2 (Herzog-Iyengar [11]). Let M ∈ modZR and letP• be a minimal graded
free resolution. We call ldR(M) := max{ i | Hi(lin(P•)) , 0 } the linearity defectof M.

Example 5.3.Let S = Q[x1, · · · , x4] and I := (x1− x4, x2
3− 5x3x4+ 4x2

4, x
2
2− x3x4) be an

ideal ofS. We shall compute a minimal graded free resolutionP• of M := S/I and its
linear part with the software system Macaulay2 ([9]). P• is as follows (see Appendix for
commands):

i1 : S := QQ[x_1,x_2,x_3,x_4]

i2 : I = ideal(x_1 - x_4, x_3ˆ2 - 5*x_3*x_4 + 4*x_4ˆ2, x_2ˆ2 - x_3*x_4)

i3 : C = res(Sˆ1/I)

i4 : C.dd

1 3

o4 = 0 : S <------------------------------------------------- S : 1

| x_1-x_4 x_2ˆ2-x_3x_4 x_3ˆ2-5x_3x_4+4x_4ˆ2 |

3 3

1 : S <----------------------------------------------------------------- S : 2

{1} | -x_2ˆ2+x_3x_4 -x_3ˆ2+5x_3x_4-4x_4ˆ2 0 |

{2} | x_1-x_4 0 -x_3ˆ2+5x_3x_4-4x_4ˆ2 |

{2} | 0 x_1-x_4 x_2ˆ2-x_3x_4 |

3 1

2 : S <-------------------------------- S : 3

{3} | x_3ˆ2-5x_3x_4+4x_4ˆ2 |

{3} | -x_2ˆ2+x_3x_4 |

{4} | x_1-x_4 |

1

3 : S <----- 0 : 4

0

Hence the linear part ofM is:
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i5 : linC = linearPart C

i6 : linC.dd

1 3

o6 = 0 : S <------------------- S : 1

| x_1-x_4 0 0 |

3 3

1 : S <----------------------------- S : 2

{1} | 0 0 0 |

{2} | x_1-x_4 0 0 |

{2} | 0 x_1-x_4 0 |

3 1

2 : S <------------------- S : 3

{3} | 0 |

{3} | 0 |

{4} | x_1-x_4 |

1

3 : S <----- 0 : 4

0

Thus we have ldS(M) = 2.

It is clear that ldR(M) ≤ proj.dimR(M). Hence whenR= S, there is a uniform bound
of linearity defects ofM ∈ modZS; we have sup{ ldS(M) | M ∈ modZS } ≤ n.

Now consider the caseR = E :=
∧⟨y1, · · · , yn⟩, an exterior algebra. Note that it

follows that we have proj.dimE(N) = ∞ for N ∈ modZE, unlessN is free; in fact assume
that proj. dimE(N) = t < ∞; then by induction ont, there is the exact sequence

0 −→ P1 −→ P0 −→ N −→ 0,

where thePi are finitely generated free modules fori = 0,1. SinceE is injective, so is
P1, and henceP1 is a direct summand ofP0, so that we deduce thatN is free.

Thus in this case we can not easily see whether or not ldE(N),N ∈ modZE is finite
and there is a uniform bound. Actually, the latter assertion is false whenn ≥ 2; in fact we
can constructN ∈ modZE with ldE(N) = i for given i ≥ 0, for we can take ”cosyzygies”
of N sinceE itself is an injectiveE-module. On the other hand, the following holds from
Proposition 1.23 and Theorem 5.11 in the below:

Proposition 5.4(Eisenbud et.al [5]). ldE(N) is finite for all N ∈ modZE.

More precisely, we have:

Proposition 5.5 (Yanagawa [27]). For N ∈ modZE, ldE(N) ≤ tn!2(n−1)! holds, where
t := max{dimK Ni | i ∈ Z }.

Linearity defects of squarefree modules behaves better than those of finite modules:

Theorem 5.6(Herzog-R̈omer [20]). We haveldE(N) ≤ proj. dimS(S (N)) ≤ n for N ∈
Sq(E).
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In particular, we have ldE(K⟨∆⟩) ≤ n for any simplicial complex∆ on [n]. This
fact is one of motivation of our study; we want to know “what can we say more about
ldE(K⟨∆⟩)”.

It is noteworthy that we can characterize linearity defects by the concept “compo-
nentwise linear”.

Definition 5.7 (Herzog-Hibi [10]). M ∈ modZR is said to becomponentwise linearif
M⟨i⟩ has a linear resolution for alli, whereM⟨i⟩ is the submodule ofM generated byMi.

Proposition 5.8(Römer and Yanagawa). It follows that

ldR(M) = min{ i | The ith syzygyΩi(M) is componentwise linear}
for M ∈ modZR (if R is Koszul).

Linear parts become easier to handle, described by “linear strands”.

Definition 5.9. Let R be a positively graded (not necessary commutative) Noetherian
Koszul K-algebra,M ∈ modZR, and letP• be a minimal graded free resolution ofM.
The l th- linear strandlin l(P•) of P• is the complex as follows:

(1) lin l(P)i = S(−i − l)βi,i+l (M), which is a direct summand ofPi;
(2) differential maps linl(P•)i → lin l(P•)i−1 are corresponding components of dif-

ferential maps ofP•.

Let R,M,P• be as above. Then we can easily verify that lin(P•) =
⊕

l∈Z lin l(P•),
and hence we have ldR(M) = max{ i | Hi(lin l(P•)) , 0, l ∈ Z }.

Let M• ∈ Com(modZR). We defineH to be a functor fromCom(modZR) to itself
such thatH i(M•) = H i(M•) and the differential maps are zero maps.

We can consider a chain complexP• : · · · → Pi → Pi−1 → · · · as the cochain one
P• : · · · → P−i → P−i+1 → · · · by settingPi := P−i, and henceforth we deal with a chain
complex as a cochain one, if necessary.

When R is the polynomial ringS = K[x1, · · · , xn] or the exterior algebraE =∧⟨y1, · · · , yn⟩, there is the following beautiful description byH and the functorsR,L
in the previous section.

Theorem 5.10([5, 26]). Let M ∈ modZS , N ∈ modZE, P• a minimal graded free
resolution of M, and Q• a minimal graded free resolution of N. Then we have

lin(P•) � L ◦H ◦R(M) and lin(Q•) � DE ◦R ◦H ◦L ◦DE(N)

in Db(modZS) andDb(modZE), respectively. Herelin(P•) and lin(Q•) are considered as
cochain complexes.

More precisely, it follows that

lin l(P•) � L (H l(R(M)))[−l] and lin l(Q•) � DE ◦R(Hn−l(L ◦DE(N)))[n− l].

Theorem 5.11([5, 26]). We have

ldE(N) = max{ regS(H i(L ◦DE(N))) + i | i ∈ Z }
for N ∈ modZE.
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Proof. Let Q• be a minimal graded free resolution ofN. It suffices to show that max{ i |
Hi(lin l(Q•)) , 0 } = regS(Hn−l(L ◦DE(N))) + n− l. By Theorem 5.10, we have

Hi(lin l(Q•)) = H−i(lin l(Q•)) � H−i(DE ◦R(Hn−l(L ◦DE(N)))[n− l])

= H−i+n−l(DE ◦R(Hn−l(L ◦DE(N))))

� DE(H i−n+l(R(Hn−l(L ◦DE(N))))),

where the last isomorphism follows from the exactness of the contravariant functorDE.
Therefore by Corollary 4.2 we conclude that max{ i | Hi(lin l(Q•)) , 0 } = max{ i |
H i−n+l(R(Hn−l(L ◦DE(N)))) , 0 } = regS(Hn−l(L ◦DE(N))) + n− l. �

Furthermore, using Proposition 4.9, we have the following:

Corollary 5.12 ([26]). For N ∈ Sq(E), it follows that

ldE(N) = max{ n− l − depthS(ExtlS(S ◦DE(N), ωS)) | 0 ≤ l ≤ n },
where we set the depth of the zero module to be∞.

Proof. By Theorem 5.11, it suffices to show that

regS(Hn−l(L ◦DE(N))) = − depthS(ExtlS(S ◦DE(N), ωS)).

By Proposition 4.9 we have∗L−1 � A ◦ D ◦ S , which implies that∗L ◦ DE(N) �
A ◦ D ◦ S ◦ DE(N)(1). Hence it follows from Proposition 4.6 and the exactness of
the contravariant functorA that Hn−l(∗L ◦ DE(N)) � Hn−l(A ◦ D ◦S ◦ DE(N)(1)) �
A (H−n+l(D ◦S ◦DE(N)))(1). SinceHn−l(∗L ◦DE(N)) � Hn−l(L ◦DE(N)) asZ-graded
modules, by Proposition 3.11 we have

regS(Hn−l(L ◦DE(N))) = regS(A (ExtlS(S ◦DE(N), ωS))) − n

= proj.dimS(ExtlS(S ◦DE(N), ωS)) − n

= −depthS(ExtlS(S ◦DE(N), ωS))

as required, where the last equality follows from Auslander-Buchsbaum formula.�

We shall introduce some important results in [17] in the following. Since these results
are shown by Yanagawa, we do not give their proof here, except for Theorem 5.16.

Let M ∈ Sq(S). ldS(M) can be computed with the depth of Ext•
S(M, ωS), which will

be made use of in Appendix A as a method for commuting linearity defects.

Proposition 5.13 ([17]). Let M ∈ Sq(S), and P• its minimal graded free resolution.
Then

max{ i | Hi(lin l(P•)) , 0 } = n− l − depthS(ExtlS(A (M), ωS)),
and hence

ldS(M) = max{ i − depthS(Extn−i
S (A (M), ωS)) | 0 ≤ i ≤ n }.

Let us recall the definition of the concept “sequentially Cohen-Macaulay”.

Definition 5.14. Let R be a positively gradedK-algebra and letM ∈ modZR. M is said
to besequentially Cohen-Macaulayif M has a (unique) filtration 0= M0 ⊂ M1 ⊂ · · · ⊂
Mt = M with dim(Mi/Mi−1) < dim(Mi+1/Mi) for i = 1, · · · ,n − 1 such thatMi/Mi−1 is
Cohen-Macaulay fori = 1, · · · ,n.
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The following characterization of sequentially Cohen-Macaulayness is well known.

Proposition 5.15. M is sequentially Cohen-Macaulay if and only ifExtiS(M, ωS) is
Cohen-Macaulay of dimension n− i for each i.

By Proposition 5.15, we see that Proposition 5.13 is a generation of the following
well-known result [10, 19]: for M ∈ Sq(S),

M is sequentially Cohen-Macaulay⇐⇒ A (M) is componentwise linear.

Of course, the latter assertion is equivalent to say that ldS(A (M)) = 0.

Proposition 5.13 and Corollary 5.12 yields the following surprising result.

Theorem 5.16([17]). For N ∈ Sq(E), we haveldE(N) = ldS(S (N)) ≤ n − 1. In
particular, for a simplicial complex∆ ⊂ 2[n], we haveldE(K⟨∆⟩) = ldS(K[∆]).

Proof. SinceS ◦ DE � S ◦ DE ◦ E ◦S = A ◦S , Proposition 5.12 and Proposition
5.13 yield that

ldE(N) = max{n− l − depthS(ExtlS(S ◦DE(N), ωS)) | 0 ≤ l ≤ n }
= max{n− l − depthS(ExtlS(A ◦S (N), ωS)) | 0 ≤ l ≤ n }
= ldS(S (N))

as required. �

By Theorem 5.16, we may set ld(∆) := ldS(K[∆]) = ldE(K⟨∆⟩).
As was shown by Yanagawa, the Alexander dual∆∨ of ∆ is essential for ld(∆).

Theorem 5.17([17]). If I∆ , (0) (equivalently,∆ , 2[n]), thenldS(I∆) is a topological
invariant of the geometric realization|∆∨| of the Alexander dual∆∨ of ∆. If ∆ , 2T for
any T⊂ [n], thenld(∆) is also a topological invariant of|∆∨| (also independent from the
number n= dimS ).

Remark5.18. ld(∆) depends on the characteristic ofK. Let ∆ be the Alexander dual
of a triangulation ofP2R. SinceP2R is a manifold,K[∆∨] is Buchsbaum. Hence we
have H2

m(K[∆∨]) � H̃1(∆∨; K) by Theorem 2.15. So, if charK = 2, then we have
depthS(Ext4S(K[∆∨], ωS)) = 0 by Theorem 1.17. Thus by Proposition 5.13, ld(∆) ≥
3− depth(Ext3S(I∆∨ , ωS)) = 3. On the other hand, according to Corollary 6.3 in the next
section, we have ld(∆) ≤ dim∆∨ + 1 = 3. Therefore ld(∆) = 3 when charK = 2. In the
case charK , 2,∆∨ is Cohen-Macauly, and henceI∆ has a linear resolution by Corollary
3.12. Summing up, we have

ld(∆) =

3 if charK = 2;

1 otherwise.

Finally, we give a conjecture due to Herzog which is another motivation of the study.

Conjecture 5.19(Herzog). Let∆ be a simplicial complex∆ on [n]. Then

ld(∆) + ld(∆∨) ≤ n.
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Since the simplicial complex∆ in Example 2.20 satisfies∆ = ∆∨, the above remark
and Theorem 5.17 implies that ld(∆) + ld(∆∨) = 6 = n if charK = 2, and thus∆ is an
example which satisfies the equality of the conjecture. No counterexample has not been
found yet.
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6. An Upper Bound of L inearity Defects

In the previous section, we stated that ldE(N) = ldS(S (N)) for N ∈ Sq(E), in partic-
ular ldE(K⟨∆⟩) = ldS(K[∆]) for a simplicial complex∆. In this section, we will give an
upper bound of them, and see that the bound is sharp.

Let 0, N ∈ modZE and 0, M ∈ modZS. We set indegE(N) := min{ i | Ni , 0 } and
indegS(M) := min{ i | Mi , 0 }, which we call theinitial degreeof N,M, respectively.
Note that for a simplicial complex∆ on [n], unless∆ , 2[n] (or equivalently,I∆ , 0 or
J∆ , 0), we have indegS(I∆) = indegE(J∆) = min{ ♯F | F ⊂ [n], F < ∆ }, where♯F
denotes the cardinal number ofF. So we set indeg(∆) := indegS(I∆) = indegE(J∆). It is
clear that indeg(∆) = n− dim∆∨ − 1.

Since ld(2[n]) = ldS(S) = ldE(E) = 0, we henceforth exclude this trivial case; we
assume that∆ , 2[n].

We often make use of the following facts:

Lemma 6.1. Let 0 , M ∈ modZS and let P• be a minimal graded free resolution of M.
Then

(1) lin l(P•) = 0 for all l < indegS(M) or l > regS(M), i.e., there are only l-linear
strands withindegS(M) ≤ l ≤ regS(M) in P•;

(2) lin indegS(M)(P•) is a subcomplex of P•;
(3) if M ∈ Sq(S), thenlin(P•) =

⊕
0≤l≤n lin l(P•), andlin l(P•)i = 0 for i > n− l and

all 0 ≤ l ≤ n, where the subscript i is a homological degree.

Proof. (1) and (2) are clear. (3) follows sincePi �
⊕

F⊂[n] S(−F)βi,F (M). �

Theorem 6.2.For N ∈ Sq(E), it follows that

ldE(N) ≤ max{0,n− indegE(N) − 1 }.
By Theorem 5.16. this is equivalent to say that for M∈ Sq(S),

ldS(M) ≤ max{0,n− indegS(M) − 1 }.
Proof. It suffices to show the assertion forM ∈ Sq(S). Set indegS(M) = d and letP• be
a minimal graded free resolution ofM. The cased = n is trivial by Lemma 6.1 (1), (3).
Assume thatd ≤ n− 1. Then the last few steps ofP• is of the form

0 −→ S(−n)βn−d,n(M) −→ S(−n)βn−d−1,n(M) ⊕ S(−n+ 1)βn−d−1,n−1(M)

by Lemma 6.1 (1), (3), again. Hence lind(P•)n−d = S(−n)βn−d,n(M) = Pn−d. Since lind(P•) is
a subcomplex of the acyclic complexP• by Lemma 6.1 (2), it followsHn−d(lind(P•)) = 0,
so that ldS(M) ≤ n− d − 1. �

Note thatJ∆ ∈ Sq(E) (resp. I∆ ∈ Sq(S)). Since ld(∆) ≤ ldE(J∆) + 1 (resp. ld(∆) ≤
ldS(I∆) + 1), we have a bound for ld(∆), applying Theorem 6.2 toJ∆ (resp.I∆).

Corollary 6.3. For a simplicial complex∆ on [n], we have

ld(∆) ≤ max{1,n− indeg∆ } = max{ 1, dim∆∨ + 1 }.
Let ∆ be a simplicial complex on [n]. For our convenience, we set ver(∆) := { v ∈

[n] | {v} ∈ ∆ }. If ver(∆) , [n], then∆ can be regarded as a simplicial complex on a
setV with ver(∆) ⊂ V ⊂ [n]. To avoid confusion, when we treat∆ in this view, we
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write ∆V, instead of∆. Note thatK[∆V] = SV/I∆V � K[∆], whereSV := K[xi | i ∈
V] � K[V] and I∆V = (xF ∈ SV | F ⊂ V, F < ∆) = I∆ ∩ SV (K⟨∆V⟩, EV, andJ∆V are also
similar). Thus ld(∆V) = ldSV(K[∆V]) = ldEV(K⟨∆V⟩), and indeg(∆V) = indegSV(K[∆V]) =
indegEV(K[∆V]).

For two simplicial complexes∆ andΓ, we denote, by∆ ∗ Γ, the join { F ∪G | F ∈
∆,G ∈ Γ } of ∆ andΓ.

Proposition 6.4. Let ∆ be a simplicial complex on[n]. Assume thatindeg(∆) = 1,
or equivalentlyver(∆) , [n]. Then we haveld(∆) = ld(∆ ∗ 2[n]\V) = ld(∆V) for any
ver(∆) ⊂ V ⊂ [n].

Proof. We have (∆V′′)V′ = ∆V′ for two setsV′,V′′ with ver(∆) ⊂ V′ ⊂ V′′ ⊂ [n], and

∆ ∗ 2[n]\V = ∆ ∗ 2{v1,··· ,vr } = (∆ ∗ 2{v1,··· ,vr−1}) ∗ {vr}
= · · · = (· · · ((∆ ∗ {v1}) ∗ {v2}) · · · ) ∗ {vr}
= (· · · ((∆ ∗ 2[n]\V1) ∗ 2[n]\V2) · · · ) ∗ 2[n]\Vr ,

where we set [n] \V = {v1, · · · , vr} andVi := [n] \ {vi} (which hence implies that ver(∆) ⊂
Vi ⊂ [n], for 1 ≤ i ≤ r), and where we denote, by{vi}, the simplex 2{vi } with the only
vertexv1. Without loss of generality, we may thus assume♯([n] \ V) = 1 and hence that
[n] \ V = {1}.

Now, let P• be a minimal graded free resolution ofK[∆ ∗ {1}] andK(x1) the Koszul
complex with respect tox1. Consider the complexP•⊗SK(x1). Then by Proposition 1.10,
we haveHi(P• ⊗S K(x1)) � Hi(P•/x1P•). Sincex1 is S-regular andK[∆ ∗ {1}]-regular,
P•/xP• is, as is well known, acyclic (cf. [3, Proposition 1.1.5]). ThusP• ⊗S K(x1)
is acyclic and hence a minimal graded freeS-resolution ofK[∆]. On the other hand,
sinceH0(P•/x1P•) = K[∆ ∗ {1}] ⊗S S/(x1) = K[∆V], the complexP•/x1P• is a minimal
graded freeSV-resolution ofK[∆V]. Note that lin(P•) ⊗S S/(x1) = lin(P•/x1P•) and
lin(P• ⊗S K(x1)) = lin(P•) ⊗S K(x1); the first equality is easy to verify, and as for the
second, we have

lin l(P• ⊗S K(x1))i = lin l(P• ⊗S S)i ⊕ lin l(P•[−1] ⊗S S(−1))i
= (lin l(P•)i ⊗S S) ⊕ (lin l(P•)i−1 ⊗S S(−1))

= (lin l(P•) ⊗S K(x1))i ,

where the subscriptsi denote homological degrees, and the differential map linl(P• ⊗S

K(x1))i −→ lin l(P• ⊗S K(x1))i−1 is composed by∂⟨l⟩i , −∂⟨l⟩i−1, and the multiplication map
by x1, where∂⟨l⟩i (resp.∂⟨l⟩i−1) is theith(resp. (i −1)st) differential map of thel-linear strand
of P•. Hence the isomorphismHi(lin(P• ⊗S K(x1))) � Hi(lin(P•/x1P•)) for all i, which
follows from again Proposition 1.10, yields the second equality of the required assertion.
For the first one, we notice that by Proposition 1.10 there is the exact sequence

0 −→ lin(P•) −→ lin(P• ⊗S K(x1)) −→ lin(P•)(−1)[−1] −→ 0.
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From the long exact sequence of homology induced by this sequence, we can deduce that
Hi(lin(P• ⊗S K(x1))) = 0 for all i ≥ ld(∆ ∗ {1}) + 2 and that there is the exact sequence

0 −→ Hld(∆∗{1})+1(lin(P• ⊗S K(x1))) −→ Hld(∆∗{1})(lin(P•)(−1))
x1−→ Hld(∆∗{1})(lin(P•)) −→ Hld(∆∗{1})(lin(P• ⊗S K(x1))).

Sincex1 does not appear in any entry of the matrices representing the differentials of
lin(P•), it is regular onH•(lin(P•)), hence we haveHld(∆∗{1})+1(lin(P• ⊗SK(x1))) = 0, and
Nakayama’s lemma implies thatHld(∆∗{1})(lin(P•⊗SK(x1))) , 0, sinceHld(∆∗{1})(lin(P•)) ,
0. Therefore the required assertion holds. �

By the above proposition, we can deduce the following:

Corollary 6.5. Let∆ be a simplicial complex on[n]. Then we have

ld(∆) ≤ max{1, ♯ ver(∆) − indeg(∆ver(∆))} = max{1,dim (∆ver(∆))
∨
+ 1}.

In particular, if indeg∆ = 1,

ld(∆) ≤ max{1,n− 3}.
Hence as is already shown in [28, Proposition 4.15], we have

Corollary 6.6. For any simplicial complex∆ on [n],

ld(∆) ≤ {1,n− 2}.
Example 6.7.According to [28, Proposition 4.14], we can construct a squarefree module
N ∈ Sq(E) with ldE(N) = proj.dimS(S (N)) = n − 1. By its construction it is easy
to check that indegE(N) = 0, and hence by Theorem 5.16M := S (N) satisfies that
indegS(M) = 0 and ldS(M) = n − 1. For 0≤ i ≤ n − 1, letΩi(M) be theith syzygy
of M. ThenΩi(M) is squarefree, and we have that ldS(Ωi(M)) = ldS(M) − i = n −
i − 1 and indegS(Ωi(M)) ≥ indegS(M) + i = i. Thus by Theorem 6.2, we know that
indegS(Ωi(M)) = i and ldS(Ωi(M)) = n− indegS(Ωi(M)) − 1. So the bound in Theorem
6.2 is optimal.

Taking the above examples into consideration, it is natural to ask whether the bound
given in Corollary 6.3 is optimal or not. Indeed, we can construct simplicial complexes
satisfying the equality ld(∆) = n− indeg∆, when 1≤ dim∆ ≤ n− 3.

Example 6.8. SetΣ := 2[n], and letΓ be a simplicial complex on [n] whose geometric
realization|Γ| is homeomorphic to the (d−1)-dimensional sphereSd−1 with 2 ≤ d < n−1.
Consider the simplicial complex∆ := Γ ∪ Σ(d−2). We will verify that ∆ is a desired
complex, that is, ld(∆) = n − indeg∆. For brief notation, we putt := indeg∆ and
l := ld(∆).

First, from our definition, it is clear thatt ≥ d. Thus it is enough to show thatn−d ≤ l;
in fact we have thatl ≤ n − t ≤ n − d ≤ l by Corollary 6.3, and hence thatt = d and
l = n− d. Our aim is to prove that

βn−d,n(K[∆]) , 0 and βn−d−1,n−1(K[∆]) = 0,

since, in this case, we haveHn−d(lind(P•)) , 0, and hencen− d ≤ l.
Now, let F ⊂ [n], and C̃•(∆F; K), C̃•(ΓF; K) be the augmented chain complexes of
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∆F andΓF, respectively. SinceΣ(d−2) have no faces of dimension≥ d − 1, we have
C̃d−1(∆F; K) = C̃d−1(ΓF; K) and henceH̃d−1(∆F; K) = H̃d−1(ΓF; K). On the other hand,
our assumption that|Γ| ≈ Sd−1 implies thatΓ is Gorenstein, and hence that

H̃d−1(ΓF; K) =

K if F = [n];

0 otherwise.

Therefore, by Proposition 2.13, we have that

βn−d,n(K[∆]) = dimK H̃d−1(Γ; K) = 1 , 0;

βn−d−1,n−1(K[∆]) =
∑

F⊂[n],♯F=n−1

dimK H̃d−1(ΓF; K) = 0.

These examples implies the bound in Corollary 6.3 is optimal if indeg(∆) ≥ 2, that
is, ver(∆) = [n].
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7. A Simplicial Complex with The Maximal L inearity Defect

By Corollary 6.6, we have ld(∆) ≤ n−2 whenn ≥ 3, and so it is natural to ask which
simplicial complex attains the equality ld(∆) = n− 2. According to Example 6.8, there
exists indeed a simplicial complex∆with ld(∆) = n−2. (In fact we have only to setd = 2
in Example 6.8). We call this complex ann-gon. Thus, a simplicial complex on [n] is an
n-gon if its facets are{1,2}, {2,3}, · · · , {n − 1,n}, and{n,1} after a suitable permutation
of vertices. One of our goals in this section is to give the answer to the above question,
that is, to show the following;

Theorem 7.1. Let∆ be a simplicial complex on[n] with n ≥ 4. Thenld(∆) = n − 2 if
and only if∆ is an n-gon.

As a corollary, we see that Herzog’s conjecture 5.19 is affirmative for a simplicial
complex∆ with dim∆ ≤ 2.

Corollary 7.2. For a simplicial complex∆ on [n], we haveld(∆)+ ld(∆∨) ≤ n, if dim∆ ≤
2.

Proof. Since we have ld(∆) = ld(∆∨) = 0 whenn = 1, we may assume thatn ≥ 2.
The assertion follows from Corollary 6.3 and Corollary 6.6 when dim∆ < 2, expect for
the casen = 2 and dim∆ = 1. In the case thatn = 2 and dim∆ = 1, or thatn = 3
and dim∆ = 2, ∆ is the simplex 2[n] and∆∨ is the void∅, and hence the assertion also
follows in this case. What remains to be shown is the case that dim∆ = 2 andn ≥ 4; in
this case, the above theorem and Corollary 6.6 implies ld(∆) ≤ n−3. Since by Corollary
6.3 again, ld(∆∨) ≤ 3 holds, we have the required. �

The below lemma serve the reduction of the proof of Theorem 7.1.

Lemma 7.3. Let∆ be a simplicial complex on[n], and P• a minimal graded free resolu-
tion of K[∆]. We denote Q• for the subcomplex of P• such that Qi := lin1(P•)i ⊕ lin0(P•)i.
Assume n≥ 4. Then the following are equivalent.

(1) ld(∆) = n− 2;
(2) Hn−2(lin2(P•)) , 0;
(3) Hn−3(Q•) , 0.

It is noteworthy that the condition (3) is equivalent toHn−3(lin1(P•)) , 0 in the case
n ≥ 5 (see the proof below).

Proof. First of all, we shall showHi(Q•) = Hi(lin1(P•)) for i ≥ 2. Note that lin0(P•)
is always acyclic; in fact the case indeg(∆) ≥ 2 is clear and in the case indeg(∆) =
1, lin0(P•) coincides the Koszul complex with respect to the sequencexi1, · · · , xit with
[n] \ ver(∆) = {i1, · · · , i t}, and hence is acyclic by Proposition 1.7. Now since lin0(P•) is
a subcomplex ofQ•, there is the exact sequence of complexes;

0 −→ lin0(P•) −→ Q• −→ lin1(P•) −→ 0.

The exact sequence of homologies induced by this and the acyclicity of lin0(P•) implies
the required assertion.
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Well, observing that fori ≥ n− 2 andl ≥ 3 we have linl(P•)i = 0 by Lemma 6.1 and
that ld(∆) ≤ n− 2 by Corollary 6.3, we see that it suffices to show the following.

Hn−2(lin2(P•)) � Hn−3(Q•) and Hi(Q•) = 0 for i ≥ n− 2 (≥ 2). (7.1)

SinceQ• is a subcomplex ofP•, there exists the following short exact sequence of com-
plexes.

0 −→ Q• −→ P• −→ P̃• := P•/Q• −→ 0,

which induces the exact sequence of homology groups

Hi(P•) −→ Hi(P̃•) −→ Hi−1(Q•) −→ Hi−1(P•).

Hence the acyclicity ofP• implies thatHi(P̃•) � Hi−1(Q•) for all i ≥ 2. Now Hi(P̃•) = 0
for i ≥ n − 1 by Lemma 6.1 and the fact thatP̃i = ⊕l≥2 lin l(P•)i. So the latter assertion
of (7.1) holds, sincen − 2 ≥ 2. The former follows from the equalityHn−2(P̃•) =
Hn−2(lin2(P•)), which is a direct consequence of the fact that lin2(P•) is a subcomplex of
P̃• andP̃n−2 = lin2(P•)n−2. �

Let∆ be a 1-dimensional simplicial complex on [n]. A cycle Cin ∆ of lengtht (≥ 3)
is a subcomplex of∆ consisting of a sequence of distinct edges of the form (v1, v2), (v2,
v3), . . . ,(vt, v1) joining distinct verticesv1, . . . vt. Let C be such a cycle. We sayC has a
chord if there exists an edge (vi, v j) of G such thatj . i + 1 (mod t). A cycle without
cords is said to beminimal. It is easy to see that the 1st homology of∆ is generated by
those of minimal cycles contained in∆, that is, we have the surjective map:⊕

C⊂∆
C:minimal cycle

H̃1(C; K) −→ H̃1(∆; K). (7.2)

where the first map composed by the natural onesH̃1(C; K) −→ H̃1(∆; K).

Now we are ready for the proof of Theorem 7.1.

Proof of Theorem 7.1.The implication “⇐” has been already done in the beginning of
this section. So we shall show the inverse. By Proposition 6.5, we may assume that
indeg(∆) ≥ 2. Let P• be a minimal graded free resolution ofK[∆] andQ• as in Lemma
7.3. Note thatQ• is determined only by [I∆]2 and that it follows [I∆]2 = [I∆(1)]2. If the
1-skeleton∆(1) of ∆ is ann-gon, then so is∆ itself. Thus by Lemma 7.3, we may assume
that dim∆ = 1. Since ld(∆) = n− 2, we have by Lemma 7.3

H̃1(∆; K) � H̃1(∆; K) � [Torn−2
S (K[∆],K)][n] , 0,

and hence∆ contains at least one cycle as a subcomplex. So it suffices to show that∆
has no cycles of length≤ n− 1. Suppose not, i.e.,∆ has some cycles of length≤ n− 1.
To give a contradiction, we shall show

0 −→ lin2(P•)n−2 −→ lin2(P•)n−3 (7.3)

is exact; in fact it followsHn−2(lin2(P•)) = 0, which contradicts to Lemma 7.3. For that,
we need some observations (this is a similar argument to that done in Theorem 4.1 of
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[24]). Consider the chain complexK[∆] ⊗K
∧

S1 ⊗K S. We can define two differential
mapϑ, ∂ on it as follows:

ϑ( f ⊗∧Gx ⊗ g) =
∑
i∈G

(−1)α(i,G)(xi f ⊗
∧G\{i}x ⊗ g);

∂( f ⊗∧Gx ⊗ g) =
∑
i∈G

(−1)α(i,G)( f ⊗∧G\{i}x ⊗ xig).

By a routine, we have that∂ϑ + ϑ∂ = 0, and easily we can check that theith homology
group of the chain complex (K[∆] ⊗K

∧
S1 ⊗K S, ϑ) is isomorphic to thei th graded free

module of a minimal free resolutionP• of K[∆]. Since, moreover, the differential maps
of lin(P•) is induced by∂ due to Eisenbud-Goto [6] and Herzog-Simis-Vasconcelos [12],
lin l(P•)i −→ lin l(P•)i−1 can be identified with⊕

F⊂[n],
♯F=i+l

[Tori
S(K[∆],K)]F ⊗K S

∂̄−→
⊕
F⊂[n],

♯F=i−1+l

[Tori−1
S (K[∆],K)]F ⊗K S, (7.4)

where∂̄ is induced by∂. We set−{i} := [n] \ {i}. Then we may identify the sequence
(7.3) with ∂̄ : [Torn−2

S (K[∆],K)][n] ⊗K S −→
⊕

i∈[n][Torn−3
S (K[∆],K)]−{i} ⊗K S, and hence

by the isomorphism (2.1), with ¯ε : H̃1(∆; K) ⊗K S −→
⊕

i∈[n] H̃1(∆−{i}; K) ⊗K S. Hereε̄
is composed by ¯εi : H̃1(∆; K)⊗K S −→ H̃1(∆−{i}; K)⊗K S, which is induced by the chain
mapεi : C̃•(∆; K) ⊗K S −→ C̃•(∆F; K) ⊗K S with

εi(e
∗
G ⊗ 1) =

(−1)α(i,G)e∗G ⊗ xi if i < G;

0 otherwise.

Now observing that∆ contains a cycle of length≤ n−1 (that is,∆ itself is not a min-
imal cycle), the surjective map (7.2) yields the surjective one ¯η :

⊕
i∈[n] H̃1(∆−{i}; K) →

H̃1(∆; K) induced by the chain mapη :
⊕

i∈[n] C̃•(∆−{i}; K) −→ C̃•(∆; K), which is com-
posed byηi : C̃•(∆−{i}; K) ∋ eG 7→ (−1)α(i,G)eG ∈ C̃•(∆; K). (We need the sign (−1)α(i,G)

for the latter convenience). Taking theK-dual of this sequence, we have the injective
map η̄∗ : H̃1(∆; K) −→

⊕
i∈[n] H̃1(∆−{i}; K), whereη̄∗ is the dual map of ¯η. Then η̄∗

is composed by theK-dual (η̄i)∗ : H̃1(∆; K) → H̃1(∆−{i}; K) of η̄i, and hence for all
0 , z ∈ H̃1(∆; K), we have (¯ηi)∗(z) , 0 for somei. Recalling the map ¯ε in (7.4) and
its construction, we see ¯ε(z⊗ 1) =

∑n
i=1(η̄i)∗(z) ⊗ xi for z ∈ H̃1(∆; K); therefore (7.3) is

exact. �

Remark7.4. (1) If ∆ is ann-gon, then∆∨ is an (n−3)-dimensional Buchsbaum complex
with H̃n−4(∆∨; K) � H̃1(∆; K) = K by Alexander’s duality. Ifn = 5, then∆∨ is a
triangulation of the M̈obius band. But, forn ≥ 6, ∆∨ is not a homology manifold. In
fact, let{1,2}, {2,3}, · · · , {n−1,n}, {n,1} be the facets of∆, then ifF = [n] \{1,3,5}, easy
computation shows that lk∆∨ F is a 0-dimensional complex with 3 vertices{1}, {3}, {5},
and henceH̃0(lk∆∨ F; K) = K2.

(2) Theorem 7.1 implies that when indeg∆ = 2, the simplicial complexes given in
Example 6.8 are the only examples which attain the equality ld(∆) = n− indeg(∆), and
so it is natural to ask if the same holds when indeg∆ ≥ 3. But unfortunately, it is false.
Let us give two examples.
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Let ∆ be the triangulation ofP2R with 6 vertices which is given in Example 2.20.
As was seen in Remark 5.18, we have ld(∆) = ld(∆∨) = 3 = 6 − indeg(∆) whenever
charK = 2.

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let∆

be the triangulation. Since dim∆ = 2, it follows that indeg(∆∨) = 7 − dim∆ − 1 = 4.
Observing thatK[∆] is Buchsbaum, we have, by easy computation, that ld(∆∨) = 3 =
7−4 = 7− indeg(∆∨). Thus∆∨ attains the equality, but is not a simplicial complex given
in Example 6.8, since it follows, from Alexander’s duality, that

dimK H̃i(∆
∨; K) = dimK H̃4−i(∆; K) =

2 , 1 for i = 3;

0 for i ≥ 4.

More generally, the dual complexes ofd-dimensional Buchsbaum complexes∆ with
H̃d−1(∆; K) , 0 satisfy the equality ld(∆∨) = n − indeg(∆∨), but many of them differ
from the examples in Example 6.8, and we can construct such complexes more easily as
indeg(∆∨) is larger.

Using the argument in the proof of Theorem 7.1, we obtain a lower bound of ld(∆),
which is shown by the following lemma:

Lemma 7.5.Let∆ be a (d−1)-dimensional Gorenstein* complex on[n] with∆ , ∅, {∅}.
Then we havẽHd−1(∆; K) , 0, andH̃d−1(∆F; K) = 0 for all F ⊂ [n] with F ( ver(∆).

Proof. The former follows from Theorem 2.17. We shall show the latter. We may assume
that ver(∆) = [n]. Then what we have to show is̃Hd−1(∆F; K) = 0 for all F ( [n]. Let
P• : 0→ Pt → · · · → P1 → P0 → 0 be a minimal graded free resolution ofK[∆]. Then
t = n− d by Auslander-Buchsbaum formula. According to the argument in the proof of
Theorem 7.1, we have linl(P•)i =

⊕
F⊂[n],♯F=i+l H̃ l−1(∆F; K)⊗K S, and hence in particular

if we write Pt =
⊕r

i=1 S(−ai), max{ai | 1 ≤ i ≤ r } = n holds sinceH̃d−1(∆; K) , 0.
Therefore by 2.17 again, we haveβi,i+d(K[∆]) = βt−i,n−i−d(K[∆]) = βt−i,t−i(K[∆]). Now
by our assumption ver(∆) = [n] we haveβi,i(K[∆]) = 0 for i ≥ 2, so thatβi,i+d(K[∆]) = 0
for i < t. HenceH̃d−1(∆F; K) ⊗K S ⊂ lind(P•)♯F−d = S(−♯F)β♯F−d,(♯F−d)+d(K[∆]) = 0 holds for
F ( [n] since♯F − d < n− d = t, and therefore we have the required. �

Proposition 7.6. For a simplicial complex on[n], we have

ld(∆) ≥ max{ ♯F − dim∆F − 1 | F ⊂ [n],∆F is Gorenstein with∆ , ∅, {∅} },
where we set the value of the right hand of the inequality to be0 if there is no F⊂ [n]
such that∆F is Gorenstein.

Proof. First, recall the description of linl(P•) by using reduced cohomologies, which is
given in the proof of Theorem 7.1. According to this description, we have linl(P•)i =⊕

F⊂[n],♯F=i+l H̃ l−1(∆F; K) ⊗K S. We denote the differential maps ofP• and linl(P•) by ∂
and∂⟨l⟩, respectively.

Assume∆F is Gorenstein. Note that∆F is of the form∆F = ∆coreF ∗ 2F\coreF, where
we set coreF := { v ∈ F | st∆F v , ∆ }. Then it follows that♯F − dim∆F − 1 = ♯F −
(dim∆coreF+♯F−♯ coreF)−1 = ♯ coreF−dim∆coreF−1, and so we may assume that∆F

is a Gorenstein* complex onF, since∆coreF is so on coreF. Setd := dim∆F+1. Then we
haveH̃d−1(∆F; K) , 0 by Lemma 7.5, whence lind(P•)♯F−d ⊃ H̃d−1(∆F; K)⊗KS , 0. Now



36

take a basezof the freeS-moduleH̃d−1(∆F; K)⊗K S. Then by minimality ofP•, z is not in
∂⟨d⟩(lind(P•)♯F−d+1). On the other hand, though∂⟨d⟩(z) ∈

⊕
G⊂F,♯G=♯F−1 H̃d−1(∆G; K) ⊗K S

holds, we haveH̃d−1(∆G; K) = 0 for all suchG by Lemma 7.5 again, and so∂⟨d⟩(z) = 0.
Therefore we concludeH♯F−d(lind(P•)) , 0. �

Remark7.7. Unfortunately, in the above proposition, the equality does not necessarily
hold; in fact, let∆ be the simplicial complex as follows:

QQQQQQQQQtttttt

pppppppp

•

pppppppp

•

((
((
((
((
((

•

00
00

00
00

•

UUUUUUUUUUU

•

��
��
��
��
��

•
� �
� �
� �
� �
�

•

4

1

2

3

6
5 7

Then max{ ♯F − 2 | ∆F is Gorenstein} = 3, while we see ld(∆) = 4, by computation with
the software system Macaulay 2 ([9]) as follows (see Appendix A in the end):

i1 : S = QQ[x_1..x_7]

i2 : D = {{1,2},{2,5},{1,3},{3,6},{1,4},{4,7},{5,6},{6,7},{5,7}}

i3 : linearityDefectByDepth(D,S)

o3 = 4

Thus we see that ld(∆) = 4.
To verify max{ ♯F − 2 | ∆F is Gorenstein} = 3, recall the concept of “hilbert series”;

for a Z-gradedK-algebraR and M ∈ modZR, the hilbert series ofM is defined by
HM(t) :=

∑
dimK Miti. We have only to verify that there is noF ⊂ {1, · · · ,7}with ♯F = 6

such that∆F is Gorenstein. Suppose not. Then by the proof of Proposition 7.6 the free
module of homological degree 4 in a minimal graded free resolutionP• of K[∆] has a
base which belongs to kernels but does not to boundaries. Thus (H4(lin(P•)))6 , 0 holds,
and hence the 6th term of HH4(lin(P•))(t) does not vanish. On the other hand, according
Macaulay 2, we have:

i4 : M = faceRing(D,S)

i5 : C = linearPart M

i6 : h = HH_4 C

i7 : hilbertSeries h

7

$T

o7 = ---------

7

(1 - $T)

o7 : Divide
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Hence the minimal degreei such that theith-term of HH4(lin(P•))(t) does not vanish, is 7,
which is a contradiction. Therefore we have the required.
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Appendix A. Computing L inearity Defects with Macaulay 2

As is seen so far, we know 3 methods of calculating linearity defects: i) the direct one
— construct linear parts, and then search for the maximal homological degree where the
homology does not vanish —; ii) the method by Proposition 5.13; iii) that by Theorem
5.11. In the following, we shall give 3 methods of computation of linearity defects with
Macaulay 2 (henceforth, abbreviated to M2), the software system [9]. For undefined
commands, see the document in http://www.math.uiuc.edu/Macaulay2/.

Method by “Linear Part”. Let m be the maximal ideal ofS. In M2, we can define
the non-well-defined mapf : S/m2→ S. This is, rather than a map, the assignment with
the following rule: (i) f (x̄i) = xi for eachi, f (0̄) = 0, andf (1̄), where forx ∈ S, x̄ denotes
the image ofx in S/m2; (ii) for a polynomialp of S, f (p̄) is done after simplification of
p and reduction of their degrees. For instance,f (x̄2

1 + x̄2) = x2, f (x̄1 − x̄1) = 0, and so
on. Making use of this, we can construct the function which returns the matrix given by
erasing terms of degree≥ 2 from a matrix given as input.

i1 : linearPart = method()

i2 : linearPart Matrix := M -> (

S := ring M; --the base ring of M

m := ideal vars S; --the maximal ideal of S

R := S/mˆ2;

f := map(R,S,vars R);

g := map(S,R,vars S);

g f M);

For example,
i3 : S = QQ[x_1..x_5]

i4 : M = matrix({{x_1*x_2,x_2 + x_3,x_4*x_5},

{x_2ˆ2 + x_1*x_5,x_1ˆ2 + x_2 + x_4*x_5,x_1 + x_2*x_3 - x_4ˆ3 + x_5}})

o4 = | x_1x_2 x_2+x_3 x_4x_5 |

| x_2ˆ2+x_1x_5 x_1ˆ2+x_4x_5+x_2 -x_4ˆ3+x_2x_3+x_1+x_5 |

2 3

o4 : Matrix S <--- S

i5 : linearPart M

o5 = | 0 x_2+x_3 0 |

| 0 x_2 x_1+x_5 |

2 3

o5 : Matrix S <--- S

Since M2 has the function “chainComplex” which returns the chain complex with
given differential maps, we can make the function “linearPart” which returns the linear
part of a given chain complex,

i6 : linearPart(ChainComplex) = C -> (

ListOfdiffs := {};

ini := min C + 1; --1 + minimal homological degree of C

ends := max C; --maximal homological degree
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for i from ini to ends do (

d := C.dd_i; --i-th differential map of C

lind := map(target d, source d, linearPart d);

ListOfdiffs = append(ListOfdiffs, lind););

chainComplex(ListOfdiffs))

hence the linear part of a minimal graded free resolution of a given module, since M2
can be compute free resolutions of modules.

i7 : linearPart(Module) = M ->(

C := res M;

complete C; --for complete computation of res M

linearPart C)

For example, the linear part of the resolution ofA/I whereA is the polynomial ring
Q[x1, · · · , x5] over the fieldQ of rational numbers andI := (x3x5, x2x5, x2x4, x1x4, x1x3)
is an ideal ofA, is:

i8 : m = matrix({{x_3*x_5,x_2*x_5,x_2*x_4,x_1*x_4,x_1*x_3}})

o8 = | x_3x_5 x_2x_5 x_2x_4 x_1x_4 x_1x_3 |

1 5

o8 : Matrix S <--- S

i9 : C = res cokernel m

1 5 5 1

o9 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

o9 : ChainComplex

i10 : C.dd --describe C with all the differential maps

1 5

o10 = 0 : S <------------------------------------------ S : 1

| x_1x_3 x_1x_4 x_2x_4 x_2x_5 x_3x_5 |

5 5

1 : S <------------------------------------ S : 2

{2} | 0 -x_4 -x_5 0 0 |

{2} | -x_2 x_3 0 0 0 |

{2} | x_1 0 0 0 -x_5 |

{2} | 0 0 0 -x_3 x_4 |

{2} | 0 0 x_1 x_2 0 |

5 1

2 : S <------------------- S : 3

{3} | -x_3x_5 |

{3} | -x_2x_5 |

{3} | x_2x_4 |

{3} | -x_1x_4 |

{3} | -x_1x_3 |

1
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3 : S <----- 0 : 4

0

o10 : ChainComplexMap

i11 : linC = linearPart cokernel m

1 5 5 1

o11 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

o11 : ChainComplex

i11 : linC.dd

1 5

o11 = 0 : S <----- S : 1

0

5 5

1 : S <------------------------------------ S : 2

{2} | 0 -x_4 -x_5 0 0 |

{2} | -x_2 x_3 0 0 0 |

{2} | x_1 0 0 0 -x_5 |

{2} | 0 0 0 -x_3 x_4 |

{2} | 0 0 x_1 x_2 0 |

5 1

2 : S <----- S : 3

0

1

3 : S <----- 0 : 4

0

o11 : ChainComplexMap

Now we can define the function “linearityDefectByLinearPart” which returns the
linearity defect of a given module:

i12 : linearityDefectByLinearPart = M -> (

S := ring M;

C := linearPart M;

ldNum := pdim M; --projective dimension of M

h := HH_ldNum C; --ldNum-th homology

while h == 0 and ldNum >= 1 do (

ldNum = ldNum - 1;

h = HH_ldNum C);

ldNum)

For example, the linearity defect ofA/I in the above, is:

i13 : linearityDefectByLinearPart cokernel m

o13 = 3

SinceA/I is a face ring of a 5-gon, ld(∆) is indeed 3 by theorem 7.1.
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Method by “Depth”. The methods we introduce from now, comes from Proposition
5.13. Since M2 can compute Ext modules, the rest of problems in realizing this method is
the following; “how can we get the Alexander dual of a given squarefree module?”. This
problem is solved by the command “dual”. The command “dual” makes use of Miller’s
definition of Alexander dual [16], which is done for any monomial ideals (of course,
for squarefree ideals, his definition and ours coincide). It takes as input a monomial
ideal and then returns the “ideal of Alexander dual”. Before giving an example, we shall
introduce the function “faceIdeal” and “faceRing” which can respectively compute the
face ideal/ring of a given simplicial complex. Here we use the list of its facets to describe
the simplicial complex.

i14 : faceIdeal = (D,R) -> (

n := numgens R;

Vars := first entries vars R; --list of variables of R

V := apply(Vars, i -> index i + 1); --vertex set

Ass := {};

assignment := i -> Vars#(i-1);

for i from 0 to #D - 1 do (

F := D #i;

Fc := toList(set(V) - set(F));

if #Fc == 0 then PF := ideal(0*Vars#0) --0 ideal of R

--Note that ‘ideal 0’ is regarded as an ideal of ZZ

else (

xFc := apply(Fc, assignment);

PF = ideal(xFc));

Ass = append(Ass,PF););

intersect(Ass))

i15 : faceRing = (D,R) -> (

I := faceIdeal(D,R);

Rˆ1/I)

We can compute the face ideal/ring of the simplicial complex in Example 2.6:
i16 : D = {{1,2,3},{1,3,4},{2,3,4},{1,2,4},{3,4,5}}

i17 : I = faceIdeal(D,S)

o17 = ideal (x x , x x , x x x x )

2 5 1 5 1 2 3 4

o17 : Ideal of S

i18 : faceRing(D,S)

o18 = cokernel | x_2x_5 x_1x_5 x_1x_2x_3x_4 |

1

o18 : S-module, quotient of S

Then its ideal of Alexander dual is:
i19 : I’ = monomialIdeal I

o19 = monomialIdeal (x x x x , x x , x x )

1 2 3 4 1 5 2 5
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o19 : MonomialIdeal of S

i19 : dual I’

o19 = monomialIdeal (x x , x x , x x , x x , x x )

1 2 1 5 2 5 3 5 4 5

o19 : MonomialIdeal of S

In fact, by using Example 2.8, we have:
i20 : faceIdeal({{1,3,4},{2,3,4},{5}},S)

o20 = ideal (x x , x x , x x , x x , x x )

4 5 3 5 2 5 1 5 1 2

o20 : Ideal of S

M2 has the command “pdim” which returns the projective dimension of a given mod-
ule, and so by Auslander-Buchsbaum formula (Theorem 1.9) the depth of a given module
M is computed by the command n - (pdim M), where n is the depth of the base ringS of
M, hence the number of variables ifS is a polynomial ring. Now we can construct the
“linearityDefectByDepth” function:

i21 : linearityDefectByDepth = (D,R) -> (

M := module dual monomialIdeal faceIdeal(D,R);

n := numgens R;

DepthList := {};

for i from n - pdim M to dim M do (

H := Extˆ(n - i)(M,Rˆ1);

if H != 0 then DepthList = append(DepthList,i - n + (pdim H)));

max DepthList)

For example,
i22 : linearityDefectByDepth(D,S)

o22 = 1

i23 : linearityDefectByDepth({{1,2},{2,3},{3,4},{4,5},{1,5}},S)

o23 = 3

Method by “BGG”. The last method is the one by BGG correspondence, that is, by
Theorem 5.11. Since M2 can compute the regularity of a given module, the realization of
the functorL is only the problem. But due to Decker and Eisenbud [4] there is already
the command “bgg” which takes as input a numberi and a moduleM ∈ modZE and then
returns the differential mapL (M)i → L (M)i+1 as output.

i24 : bgg = (i,M,B) -> (

A :=ring M;

numvarsB := rank source vars B;

ev:=map(B,A,vars B);

f0:=basis(i,M);

f1:=basis(i+1,M);

g :=((vars A)**f0)//f1;

b:=(ev g)*((transpose vars B)**(ev source f0));

--correct the degrees (which are otherwise
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--wrong in the transpose)

map(Bˆ{(rank target b):i+1},Bˆ{(rank source b):i}, b))

RemarkA.1. Actually in [4] bgg is introduced the command which returnsR(M)i →
R(M)i+1 whereR is an adjoint functor ofL (see for details [4, 5]). But careful observa-
tion of its program tells us that it also works as a tool returning the differential map of
L (M).

The function “linearityDefectByBgg” can be constructed as follows:
i25 : linearityDefectByBgg = N -> (

E := ring N;

n := numgens E;

S := (coefficientRing E)[x_1..x_n];

N’ := Hom(N,E);

ListOfRegs := {};

D := degrees N’; --all the degrees of a minimal system of generators of N’

indeg := first min D; --minimal deg in D

endeg := first max D; --maximal deg in D

for i from indeg to endeg + n do(

Z := kernel bgg(i,N’,S);

B := image bgg(i-1,N’,S);

H := Z/B;

if H == 0 then r = -i

else r = regularity H;

ListOfRegs = prepend(r+i,ListOfRegs););

max ListOfRegs)

For example,
i26 : E = QQ[y_1..y_5, SkewCommutative => true]

i27 : N = faceRing(D,E)

o27 = cokernel | y_2y_5 y_1y_5 y_1y_2y_3y_4 |

1

o27 : E-module, quotient of E

i28 : linearityDefectByBgg N

o28 = 1

i29 : linearityDefectByBgg faceRing({{1,2},{2,3},{3,4},{4,5},{1,5}},E)

o29 = 3
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