LINEARITY DEFECTS OF FACE RINGS

RYOTA OKAZAKI

第 12 回代数学若手研究会

This is a joint work with Kohji Yanagawa, and most results given in this talk are found in [3].

Let $A := \bigoplus_{i \in \mathbb{N}} A_i$ be a polynomial ring $S := K[x_1, \dots, x_n]$ or an exterior algebra $E := \bigwedge \langle y_1, \dots, y_n \rangle$ over a field K, *mod A the category of finitely generated graded (left) A-modules, and P_{\bullet} a minimal graded free resolution of $M \in \text{*mod } A$. The *linear* part lin(P_{\bullet}) of P_{\bullet} is the chain complex such that lin(P_{\bullet})_i = P_i and its differential map is given by erasing all the terms of degree ≥ 2 from the matrices of those of P_{\bullet} . According to [2], we call

$$\mathrm{ld}_A(M) := \sup\{i \mid H_i(\mathrm{lin}(P_\bullet)) \neq 0\}$$

the linearity defect of M.

Set $[n] := \{1, 2, \dots, n\}$ and let Δ be a simplicial complex, i.e., a subset of $2^{[n]}$ with the property that $F \subset G, G \in \Delta$ implies $F \in \Delta$. We set

$$I_{\Delta} := \left(\prod_{i \in F} x_i \mid F \subset [n], F \notin \Delta\right) \subset S, \quad J_{\Delta} := \left(\bigwedge_{i \in F} y_i \mid F \subset [n], F \notin \Delta\right) \subset E.$$

The quotient ring $K[\Delta] := S/I_{\Delta}$ is called the *Stanley-Reisner ring*, and $K\langle\Delta\rangle := E/J_{\Delta}$ is called the *exterior face ring*. Both are very important in Combinatorial Commutative Algebra.

The following are main results of our talk.

Theorem 1. For a simplicial complex Δ on [n], we have

- (1) $\operatorname{ld}_E(K\langle\Delta\rangle) = \operatorname{ld}_S(K[\Delta])$ (henceforth we set $\operatorname{ld}(\Delta) := \operatorname{ld}_E(K\langle\Delta\rangle) = \operatorname{ld}_S(K[\Delta]));$
- (2) if $\Delta \neq 2^{T}$ for any $T \subset [n]$, $\operatorname{ld}(\Delta)$ is a topological invariant of the geometric realization $|\Delta^{\vee}|$ of the Alexander dual $\Delta^{\vee} := \{ F \subset [n] \mid [n] \setminus F \notin \Delta \}.$

As for $\mathrm{ld}_E(K\langle\Delta\rangle)$, Herzog-Römer and Yanagawa showed the following upper bound: for a simplicial complex Δ on [n], we have

$$\mathrm{ld}_E(K\langle\Delta\rangle) \le \max\{1, n-2\}.$$

In particular, by Theorem 1 we have $ld(\Delta) \le n-2$, if $n \ge 3$. Thus it is natural to ask which simplicial complex attains the equality $ld(\Delta) = n-2$. The next is the answer.

Theorem 2. If $n \ge 4$, we have $\operatorname{ld}(\Delta) = n - 2 \iff \Delta$ is an n-gon (a triangulation of a circle S^1 with n vertices).

References

- D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003), 4397-4426.
- [2] J. Herzog and S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005), 154–188.
- [3] R. Okazaki and K. Yanagawa, Linearity defects of face rings, preprint (math.AC/0607780).
- [4] K. Yanagawa, Castelnuovo-Mumford regularity for complexes and weakly Koszul modules, J. Pure and Appl. Algebra 207 (2006), 77–97.