EXTENDED CANONICAL IDEALS AND GOTO RINGS

NAOKI ENDO

Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $d = \dim A > 0$ admitting a canonical module K_A . We assume *A* contains a canonical ideal *I*, i.e., *I* is an ideal of *A* such that $I \neq A$ and *I ∼*= K*^A* as an *A*-module. Introduced by Northcott and Rees, for ideals *J* and *Q* of *A* with $Q \subseteq J$, we say that Q is a *reduction* of *J* if $J^{r+1} = QJ^r$ for some $r \ge 0$; the least such integer *r* is called the *reduction number* of *J* with respect to *Q*. An ideal *J* is called an *extended canonical ideal* of *A* if $J = I + Q$ for some parameter ideal $Q = (a_1, a_2, \ldots, a_d)$ satisfying that *a*₁ ∈ *I* and *Q* is a reduction of *J*. Note that $J\overline{A}$ forms a canonical ideal of $\overline{A} = A/\mathfrak{q}$ if $d \ge 2$, where $q = (a_2, \ldots, a_d)$.

The aim of this talk is, as part of stratification of Cohen-Macaulay rings, to introduce the notion of Goto rings, generalizing the notion of almost Gorenstein rings defined by Barucci and Fröberg [1] for one-dimensional analytically unramified local rings; Goto, Matsuoka, and Phuong [2] for one-dimensional Cohen-Macaulay local rings; and Goto, Takahashi, and the speaker of this talk [3] for Cohen-Macaulay graded/local rings of arbitrary dimension. What has dominated the series of researches on almost Gorenstein rings is the fact that the reduction numbers of extended canonical ideals are at most 2; we define Goto rings as Cohen-Macaulay rings admitting such extended canonical ideals.

REFERENCES

- [1] V. Barucci and R. Fröberg, *One-dimensional almost Gorenstein rings*, J. Algebra, 188 (1997), no. 2, 418– 442.
- [2] S. Goto, N. Matsuoka, and T. T. Phuong, *Almost Gorenstein rings*, J. Algebra, 379 (2013), 355–381.
- [3] S. Goto, R. Takahashi, and N. Taniguchi, *Almost Gorenstein rings -towards a theory of higher dimension*, J. Pure Appl. Algebra, 219 (2015), 2666–2712.

SCHOOL OF POLITICAL SCIENCE AND ECONOMICS, MEIJI UNIVERSITY, 1-9-1 EIFUKU, SUGINAMI-KU, TOKYO 168-8555, JAPAN

Email address: endo@meiji.ac.jp

BEST POSSIBLE DEGREE BOUND FOR GRÖBNER BASES OF 1-DIMENSIONAL IDEALS

KOICHIRO TANI

Let k be a field, $S = k[x_1, \ldots, x_n]$ a polynomial ring. A *monomial order* \preceq is a total order on the set of all monomials in S such that $u \preceq v$ implies $uw \preceq vw$ for each monomials u, v, w and 1 is the least monomial. The largest term in $f \in S$ with respect to \preceq is called the *initial term* of f and we write in_{\prec}(f). A k-vector space spanned by $\{\text{in}_{\prec}(f) \mid$ $f \in I$ is the *initial ideal* of I and write in_{\prec}(I). We call a set of polynomials $\{g_1, \ldots, g_t\}$ *Gröbner basis* if $\text{in}_{\preceq}(I) = (\text{in}_{\preceq}(g_1), \ldots, \text{in}_{\preceq}(g_t))$. A Gröbner basis $\{g_1, \ldots, g_t\}$ is *reduced* if they are monic and for each g_i , there is no monomial in g_i divisible by $\text{in}_{\prec}(g_i)$ for any $j \neq i$. In this talk, we will consider the next question.

Question 1. Let max. GB. $deg_{\prec}(I)$ be the maximal degree of reduced *Gröbner basis and* deg(I) *the maximal degree of minimal generators. How does* max. GB. $deg_{\prec}(I) - deg(I)$ *become large?*

From now on, let I be a homogeneous ideal of S. The Hilbert series of S/I is $\text{HS}(S/I;t) \coloneqq \sum_{i=0}^{\infty} \dim_{\mathbb{k}}(S/I)_i t^i$. For all I and \preceq , $\text{HS}(S/I;t) =$ $\text{HS}(S/\text{in}_{\prec}(I)).$ This fact is known as Macaulay's Theorem. Furthermore, by the definition of Gröbner basis, max. GB. $\deg_{\prec}(I) = \deg(\mathrm{in}_{\prec}(I)).$ The degree deg(in $\langle I \rangle$) can be bounded by the degree of the lexsegment ideal.

Definition 2. Let a term order \preceq be the lexicographic order. A monomial ideal *J* is called the *lexsegment ideal* if, for all monomials $m \in J$, any monomials m' satisfying $\deg(m) = \deg(m')$ and $m \leq m'$ also belong to J.

Theorem 3 (Macaulay's Theorem)**.** *For any homogeneous ideal* I*, there uniquely exists a lexsequent ideal* J *such that* $\text{HS}(S/I;t)$ = HS($S/J; t$). Moreover, for any $d \geq 0$, J has at least as many gen*erators in degree* d *as any other monomial ideal with the same Hilbert series.*

Corollary 4. *For any homogeneous ideal* I*, let* J *be the lexsegment ideal of* $\text{HS}(S/I;t)$ *. Then, we have* max. GB. $\text{deg}_{\prec}(I) \leq \text{deg}(J)$ *for any monomial order* \prec .

We want to determine whether the bound $deg(J)$ is the best possible. It is sufficient to find an ideal as described in the following question.

Question 5. Find any homogeneous ideal I and monomial order \preceq *where* $deg(I)$ *is as small as possible and* $in_{\prec}(I)$ *is equal to the lexseqment ideal of* $\text{HS}(S/I; t)$ *.*

For simplicity, let I be generated by regular sequence. We set parameterized polynomials

$$
f_1 = a_{1,1}x_1^{d_1} + a_{1,2}x_1^{d_1-1}x_2 + \cdots + a_{1,r_1}x_n^{d_1}
$$

\n:
\n:
\n
$$
f_s = a_{s,1}x_1^{d_s} + a_{s,2}x_1^{d_s-1}x_2 + \cdots + a_{s,r_s}x_n^{d_s}
$$

where $r_i = \binom{n+d_i-1}{d_i}$ $\binom{d_i-1}{d_i}$. Let $N = \sum_{i=1}^s r_i$. Choosing a point in \mathbb{R}^N and assigning each entry to each parameter $a_{i,j}$ is equivalent to determining specific polynomials $f_1, \ldots, f_s \in S$ as generators of I. We have the following lemma, referring to discussions about generic initial ideals with exterior algebra. (see [\[1,](#page-2-0) Section 15.9]).

Lemma 6. Fix a monomial order \preceq . There is a Zariski open dense set $U \subset \mathbb{R}^N$ such that for all $\mathbf{a} \in U$, initial ideals of I generated by f_1, \ldots, f_s *corresponding to* **a** *are the same.*

As a temporary term, we call the initial ideal above the initial ideal of *almost case*.

Theorem 7. If $n = 4$, $s = 2$, $d_1 = d_2 = 2$, there is no regular sequence *whose initial ideal with respect to lexicographic order is the lexsegment ideal.*

Theorem 8. *If* $n = 3, s = 2, 2 \le d_1, d_2 \le 3$, or if $n = 4, s = 3, 2 \le d_1$ $d_1, d_2, d_3 \leq 3$, then initial ideals of almost case with respect to lexico*graphic order are lexsegment ideals.*

We can expect the following claims. If the Krull dimension of S/I is 2, then the initial ideals of I are never lexsegment ideals, but if the Krull dimension of S/I is 1, then the initial ideals of almost case of I with respect to lexicographic order are lexsegment ideals.

References

[1] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry.

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan *Email address*: tani-k@ist.osaka-u.ac.jp

BINOMIAL EDGE RINGS OF COMPLETE BIPARTITE GRAPHS

AKIHIRO HIGASHITANI

1. Binomial edge rings of finite simple graphs

Let G be a graph on the vertex set $V(G) = [d] := \{1, \ldots, d\}$ with the edge set $E(G)$. Let k be a field and let $S = \mathbb{k}[x_1, \ldots, x_d, y_1, \ldots, y_d]$. We introduce a subring $\mathcal{R}(G)$ of S as follows:

$$
\mathcal{R}(G) := \mathbb{k}[x_i y_j - x_j y_i : \{i, j\} \in E(G)] \subset S.
$$

We call $\mathcal{R}(G)$ the binomial edge ring of G.

Several kinds of ideals and subrings of polynomial rings associated with graphs have been introduced and studied.

- We call the ideal $(x_ix_j : \{i, j\} \in E(G)) \subset \mathbb{k}[x_1, \ldots, x_d]$ the edge ideal of G. For an introduction to edge ideals and some fundamental results on them, see, e.g., [1, Section 11] and [6, Section 7].
- We call the subring $\Bbbk[x_ix_j : \{i, j\} \in E(G)] \subset \Bbbk[x_1, \ldots, x_d]$ the edge ring of G. See, e.g., [2, Section 5] and [6, Sections 10 and 11] for their introduction.
- We call the ideal $(x_iy_j x_jy_i : \{i, j\} \in E(G)) \subset S$ the binomial edge ideal of G. See, e.g., [2, Section 7] for the introduction.

Considering these trends, it is quite natural to introduce binomial edge rings of G.

2. SAGBI basis and Hibi rings

Fix a monomial order \lt on the polynomial ring R. Given $\mathcal{F} = \{f_1, \ldots, f_n\} \subset R$, consider the finitely generated subalgebra $\mathbb{k}[\mathcal{F}]$ of R. We say that F is a SAGBI basis with respect to $\langle f \rangle = \kappa \{ \text{in}_\langle f_1, \ldots, \text{in}_\langle f_n \rangle \}$ holds, where $\text{in}_\langle f \rangle$ denotes the initial monomial of f with respect to $\langle \text{and in}_{\langle k|F| \rangle} \rangle$ is the subalgebra generated by $\{\text{in}_<(f) : f \in \mathbb{k}[\mathcal{F}]\}.$ The terminology "SAGBI" derives from "Subalgebra" Analogue to Gröbner Basis for Ideals" and was introduced in $[4]$. It is not necessary that in_<($\Bbbk[\mathcal{F}]$) is finitely generated even if $\Bbbk[\mathcal{F}]$ is finitely generated ([4]).

Let $\Pi = \{p_1, \ldots, p_{d-1}\}\$ be a poset equipped with a partial order \prec . A poset ideal of Π is a subset $I \subset \Pi$ satisfying " $x \in I$ and $y \prec x$ imply $y \in I$ ". Let $\mathcal{I}(\Pi)$ denote the set of all poset ideals of Π . We define the k-subalgebra $\Bbbk[\Pi]$ by setting $\Bbbk[\Pi] := \Bbbk[(\prod_{p_i \in I} x_i)x_d : I \in \mathcal{I}(\Pi)] \subset \Bbbk[x_1,\ldots,x_d]$. We call $\Bbbk[\Pi]$ the *Hibi ring* of Π .

3. INITIAL ALGEBRAS OF PLÜCKER ALGEBRAS

Given $k, d \in \mathbb{Z}$ with $1 \leq k < d$, let $\mathbf{I}_{k,d} = \{I \subset [d] : |I| = k\}$. We define

 $\mathcal{A}_{k,d} := \mathbb{k}[\det(X_I) : I \in \mathbf{I}_{k,d}] \subset \mathbb{k}[x_{ij} : 1 \leq i \leq k, 1 \leq j \leq d],$

where X_I denotes the $k \times k$ -submatrix of the $k \times d$ -matrix of indeterminates (x_{ii}) whose columns are indexed by I. This algebra $A_{k,d}$ is called *Plücker algebras*, known

Graduate School of Information Science and Technology, Osaka University, Osaka, Japan higashitani@ist.osaka-u.ac.jp.

as a homogeneous coordinate ring of Grassmannians $\mathrm{Gr}_k(k, d)$. Moreover, it is known that $\{\det(X_I) : I \in I_{k,d}\}\)$ forms a SAGBI basis of $\mathcal{A}_{k,d}$ with respect to the graded lexicographic order induced by the ordering of variables $x_{11} > \cdots > x_{1d} > x_{21} >$ $\cdots > x_{2d} > \cdots > x_{k1} > \cdots > x_{kd}$. Furthermore, the initial algbra in $(A_{k,d})$ with respect to this monomial order is isomorphic to the Hibi ring of a certain poset. For more detailed information, see, e.g., [5, Chapter 11]. Via initial algebras, we can obtain the Hilbert series, the Gorensteinness of $\mathcal{A}_{k,d}$, and so on.

Here, notice that $\mathcal{A}_{2,d}$ coincides with $\mathcal{R}(K_d)$, where K_d is the complete graph with d vertices. Namely, we can interpret $\mathcal{R}(G)$ as a certain analogue of Plücker algebras. In this talk, we discuss the properties of $\mathcal{R}(G)$ by studying the initial algebras.

4. Main Results

Let $K_{a,b}$ be the complete bipartite graph. The goal of this talk is to determine a SAGBI basis of $\mathcal{R}(K_{a,b})$. To this end, we introduce some notation:

$$
S_{a,b} := \mathbb{k}[x_1, \dots, x_a, x'_1, \dots, x'_b, y'_1, \dots, y'_a, y_1, \dots, y_b]
$$

$$
f_{ij} := x_i y_j - x'_j y'_i \in S_{a,b} \ (1 \le i \le a, 1 \le j \le b)
$$

< : graded lexicographic order induced by

$$
x_1 > \cdots > x_a > x'_1 > \cdots > x'_b > y'_1 > \cdots > y'_a > y_1 > \cdots > y_b
$$

Let $\Pi_{a,b}$ be the poset depicted in Figure 1.

FIGURE 1. Poset $\Pi_{a,b}$

Theorem 1. Given $2 \le a \le b$, let

 $\mathcal{G}_{a,b} = \{f_{ij} : 1 \leq i \leq a, 1 \leq j \leq b\} \cup \{f_{ij'}f_{i'j} - f_{ij}f_{i'j'} : 1 \leq i < i' \leq a, 1 \leq j' < j \leq b\}.$ Then $\mathcal{G}_{a,b}$ forms a SAGBI basis of $\mathcal{R}(K_{a,b})$ with respect to \lt and the initial algebra of $\Pi_{a,b}$ becomes isomorphic to the Hibi ring of $\Pi_{a,b}$. Hence, we see the following:

- $\mathcal{R}(K_{a,b})$ is a Cohen–Macaulay domain of Krull dimension $2(a + b 2)$;
- $\mathcal{R}(K_{a,b})$ is Gorenstein if and only if $a=2$ or $a=b$.

REFERENCES

- [1] J. Herzog and T. Hibi, "Monomial ideals", GTM, 260, London: Springer, 2011.
- [2] J. Herzog, T. Hibi and H. Ohsugi, "Binomial ideals", GTM, 279, Springer, Cham, 2018.
- [3] A. Higashitani, Binomial edge rings of complete bipartite graphs, in preparation.
- [4] L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes in Math., vol. 1430, Springer, Berlin, (1990), pp. 61–87.
- [5] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
- [6] R. H. Villarreal, "Monomial algebras, 2nd ed. ed.", Monogr. Res. Notes Math., Boca Raton, FL: CRC Press, 2015.