
EXTENDED CANONICAL IDEALS AND GOTO RINGS

NAOKI ENDO

Let (A,m) be a Cohen-Macaulay local ring with d = dimA > 0 admitting a canonical
module KA. We assume A contains a canonical ideal I, i.e., I is an ideal of A such that I ̸= A
and I ∼= KA as an A-module. Introduced by Northcott and Rees, for ideals J and Q of A with
Q ⊆ J, we say that Q is a reduction of J if Jr+1 = QJr for some r ≥ 0; the least such integer
r is called the reduction number of J with respect to Q. An ideal J is called an extended
canonical ideal of A if J = I+Q for some parameter ideal Q = (a1,a2, . . . ,ad) satisfying that
a1 ∈ I and Q is a reduction of J. Note that JA forms a canonical ideal of A = A/q if d ≥ 2,
where q= (a2, . . . ,ad).

The aim of this talk is, as part of stratification of Cohen-Macaulay rings, to introduce the
notion of Goto rings, generalizing the notion of almost Gorenstein rings defined by Barucci
and Fröberg [1] for one-dimensional analytically unramified local rings; Goto, Matsuoka, and
Phuong [2] for one-dimensional Cohen-Macaulay local rings; and Goto, Takahashi, and the
speaker of this talk [3] for Cohen-Macaulay graded/local rings of arbitrary dimension. What
has dominated the series of researches on almost Gorenstein rings is the fact that the reduction
numbers of extended canonical ideals are at most 2; we define Goto rings as Cohen-Macaulay
rings admitting such extended canonical ideals.
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BEST POSSIBLE DEGREE BOUND FOR GRÖBNER
BASES OF 1-DIMENSIONAL IDEALS

KOICHIRO TANI

Let k be a field, S = k[x1, . . . , xn] a polynomial ring. A monomial
order � is a total order on the set of all monomials in S such that u � v
implies uw � vw for each monomials u, v, w and 1 is the least mono-
mial. The largest term in f ∈ S with respect to � is called the initial
term of f and we write in�(f). A k-vector space spanned by {in�(f) |
f ∈ I} is the initial ideal of I and write in�(I). We call a set of poly-
nomials {g1, . . . , gt} Gröbner basis if in�(I) = (in�(g1), . . . , in�(gt)). A
Gröbner basis {g1, . . . , gt} is reduced if they are monic and for each gi,
there is no monomial in gi divisible by in�(gj) for any j 6= i. In this
talk, we will consider the next question.

Question 1. Let max.GB. deg�(I) be the maximal degree of reduced
Gröbner basis and deg(I) the maximal degree of minimal generators.
How does max.GB. deg�(I)− deg(I) become large?

From now on, let I be a homogeneous ideal of S. The Hilbert series of
S/I is HS(S/I; t) :=

∑∞
i=0 dimk(S/I)it

i. For all I and �, HS(S/I; t) =
HS(S/ in�(I)). This fact is known as Macaulay’s Theorem. Further-
more, by the definition of Gröbner basis, max.GB. deg�(I) = deg(in�(I)).
The degree deg(in�(I)) can be bounded by the degree of the lexsegment
ideal.

Definition 2. Let a term order � be the lexicographic order. A mono-
mial ideal J is called the lexsegment ideal if, for all monomials m ∈ J ,
any monomials m′ satisfying deg(m) = deg(m′) and m � m′ also be-
long to J .

Theorem 3 (Macaulay’s Theorem). For any homogeneous ideal I,
there uniquely exists a lexsegment ideal J such that HS(S/I; t) =
HS(S/J ; t). Moreover, for any d ≥ 0, J has at least as many gen-
erators in degree d as any other monomial ideal with the same Hilbert
series.

Corollary 4. For any homogeneous ideal I, let J be the lexsegment
ideal of HS(S/I; t). Then, we have max.GB. deg�(I) ≤ deg(J) for any
monomial order �.



We want to determine whether the bound deg(J) is the best possible.
It is sufficient to find an ideal as described in the following question.
Question 5. Find any homogeneous ideal I and monomial order �
where deg(I) is as small as possible and in�(I) is equal to the lexsegment
ideal of HS(S/I; t).

For simplicity, let I be generated by regular sequence. We set pa-
rameterized polynomials

f1 = a1,1x
d1
1 + a1,2x

d1−1
1 x2 + · · ·+ a1,r1x

d1
n

...
fs = as,1x

ds
1 + as,2x

ds−1
1 x2 + · · ·+ as,rsx

ds
n

where ri =
(
n+di−1

di

)
. Let N =

∑s
i=1 ri. Choosing a point in kN and

assigning each entry to each parameter ai,j is equivalent to determining
specific polynomials f1, . . . , fs ∈ S as generators of I. We have the
following lemma, referring to discussions about generic initial ideals
with exterior algebra. (see [1, Section 15.9]).
Lemma 6. Fix a monomial order �. There is a Zariski open dense
set U ⊂ kN such that for all a ∈ U , initial ideals of I generated by
f1, . . . , fs corresponding to a are the same.

As a temporary term, we call the initial ideal above the initial ideal
of almost case.
Theorem 7. If n = 4, s = 2, d1 = d2 = 2, there is no regular sequence
whose initial ideal with respect to lexicographic order is the lexsegment
ideal.
Theorem 8. If n = 3, s = 2, 2 ≤ d1, d2 ≤ 3, or if n = 4, s = 3, 2 ≤
d1, d2, d3 ≤ 3, then initial ideals of almost case with respect to lexico-
graphic order are lexsegment ideals.

We can expect the following claims. If the Krull dimension of S/I
is 2, then the initial ideals of I are never lexsegment ideals, but if the
Krull dimension of S/I is 1, then the initial ideals of almost case of I
with respect to lexicographic order are lexsegment ideals.
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BINOMIAL EDGE RINGS OF COMPLETE BIPARTITE GRAPHS

AKIHIRO HIGASHITANI

1. Binomial edge rings of finite simple graphs

Let G be a graph on the vertex set V (G) = [d] := {1, . . . , d} with the edge set
E(G). Let k be a field and let S = k[x1, . . . , xd, y1, . . . , yd]. We introduce a subring
R(G) of S as follows:

R(G) := k[xiyj − xjyi : {i, j} ∈ E(G)] ⊂ S.

We call R(G) the binomial edge ring of G.
Several kinds of ideals and subrings of polynomial rings associated with graphs

have been introduced and studied.
• We call the ideal (xixj : {i, j} ∈ E(G)) ⊂ k[x1, . . . , xd] the edge ideal of G.
For an introduction to edge ideals and some fundamental results on them,
see, e.g., [1, Section 11] and [6, Section 7].

• We call the subring k[xixj : {i, j} ∈ E(G)] ⊂ k[x1, . . . , xd] the edge ring of
G. See, e.g., [2, Section 5] and [6, Sections 10 and 11] for their introduction.

• We call the ideal (xiyj − xjyi : {i, j} ∈ E(G)) ⊂ S the binomial edge ideal
of G. See, e.g., [2, Section 7] for the introduction.

Considering these trends, it is quite natural to introduce binomial edge rings of G.

2. SAGBI basis and Hibi rings

Fix a monomial order < on the polynomial ring R. Given F = {f1, . . . , fn} ⊂ R,
consider the finitely generated subalgebra k[F ] of R. We say that F is a SAGBI basis
with respect to < if in<(k[F ]) = k[in<(f1), . . . , in<(fn)] holds, where in<(f) denotes
the initial monomial of f with respect to< and in<(k[F ]) is the subalgebra generated
by {in<(f) : f ∈ k[F ]}. The terminology “SAGBI” derives from “Subalgebra
Analogue to Gröbner Basis for Ideals” and was introduced in [4]. It is not necessary
that in<(k[F ]) is finitely generated even if k[F ] is finitely generated ([4]).

Let Π = {p1, . . . , pd−1} be a poset equipped with a partial order ≺. A poset ideal
of Π is a subset I ⊂ Π satisfying “x ∈ I and y ≺ x imply y ∈ I”. Let I(Π)
denote the set of all poset ideals of Π. We define the k-subalgebra k[Π] by setting
k[Π] := k[(

∏
pi∈I xi)xd : I ∈ I(Π)] ⊂ k[x1, . . . , xd]. We call k[Π] the Hibi ring of Π.

3. Initial algebras of Plücker algebras

Given k, d ∈ Z with 1 ≤ k < d, let Ik,d = {I ⊂ [d] : |I| = k}. We define

Ak,d := k[det(XI) : I ∈ Ik,d] ⊂ k[xij : 1 ≤ i ≤ k, 1 ≤ j ≤ d],

where XI denotes the k × k-submatrix of the k × d-matrix of indeterminates (xij)
whose columns are indexed by I. This algebra Ak,d is called Plücker algebras, known
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as a homogeneous coordinate ring of Grassmannians Grk(k, d). Moreover, it is known
that {det(XI) : I ∈ Ik,d} forms a SAGBI basis of Ak,d with respect to the graded
lexicographic order induced by the ordering of variables x11 > · · · > x1d > x21 >
· · · > x2d > · · · > xk1 > · · · > xkd. Furthermore, the initial algbra in<(Ak,d) with
respect to this monomial order is isomorphic to the Hibi ring of a certain poset. For
more detailed information, see, e.g., [5, Chapter 11]. Via initial algebras, we can
obtain the Hilbert series, the Gorensteinness of Ak,d, and so on.

Here, notice that A2,d coincides with R(Kd), where Kd is the complete graph with
d vertices. Namely, we can interpret R(G) as a certain analogue of Plücker algebras.
In this talk, we discuss the properties of R(G) by studying the initial algebras.

4. Main Results

Let Ka,b be the complete bipartite graph. The goal of this talk is to determine a
SAGBI basis of R(Ka,b). To this end, we introduce some notation:

Sa,b := k[x1, . . . , xa, x
′
1, . . . , x

′
b, y

′
1, . . . , y

′
a, y1, . . . , yb]

fij := xiyj − x′
jy

′
i ∈ Sa,b (1 ≤ i ≤ a, 1 ≤ j ≤ b)

< : graded lexicographic order induced by

x1 > · · · > xa > x′
1 > · · · > x′

b > y′1 > · · · > y′a > y1 > · · · > yb

Let Πa,b be the poset depicted in Figure 1.

a− 1
b− 1

Figure 1. Poset Πa,b

Theorem 1. Given 2 ≤ a ≤ b, let

Ga,b = {fij : 1 ≤ i ≤ a, 1 ≤ j ≤ b}∪{fij′fi′j−fijfi′j′ : 1 ≤ i < i′ ≤ a, 1 ≤ j′ < j ≤ b}.
Then Ga,b forms a SAGBI basis of R(Ka,b) with respect to < and the initial algebra
of Πa,b becomes isomorphic to the Hibi ring of Πa,b. Hence, we see the following:

• R(Ka,b) is a Cohen–Macaulay domain of Krull dimension 2(a+ b− 2);
• R(Ka,b) is Gorenstein if and only if a = 2 or a = b.
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