
Abstract: The kth squarefree power of a monomial ideal I is generated by 
the squarefree monomials in Ik. If I is an edge ideal, then the kth squarefree 
power of I is closely related to the k-matchings of the associated graph. In 
this talk, we are interested in regularity and normalized depth function of 
squarefree powers of edge ideals. We discuss the question of when such powers 
have linear resolutions or are linearly related. We bound the regularity via 
refined versions of matching numbers and explore nonincreasing behaviour of 
the normalized depth function. This talk is based on joint work with Jürgen 
Herzog, Takayuki Hibi and Sara Saeedi Madani in [1, 2, 3].

References

[1] N. Erey and T. Hibi, Squarefree powers of edge ideals of forests, Electron.
J. Combin., 28 (2021), #2.32.

[2] N. Erey, J. Herzog, T. Hibi and S. Saeedi Madani, Matchings and
squarefree powers of edge ideals, J. Comb. Theory Series. A, 188 (2022),
#105585.

[3] N. Erey, J. Herzog, T. Hibi and S. Saeedi Madani, The normalized depth
function of squarefree powers, Collect. Math., 75 (2024), 409–423.

Normalized depth and regularity of squarefree powers

Nursel Erey (Gebze Technical University)



LOCAL COHOMOLOGY MODULES AT IDEALS ASSOCIATED
WITH SIMPLICIAL POSETS

KOHJI YANAGAWA (KANSAI UNIVERSITY)

This is a joint work with Kosuke Shibata (National Institute of Tech-
nology, Yonago College).

Let S = K[x1, . . . , xn] be a polynomial ring, and I∆ ⊂ S a Stanley-Reisner ideal.
In [1, 3], we studied the local cohomology modules H i

I∆
(S) very precisely. We try to

extend this approach to the defining ideal IP of the face ring of a simplicial poset.
(IP is a generalization of I∆.)
We say a finite poset P is simplicial, if P has the smallest element 0̂, and the

subposet { y ∈ P | y ≤ x } is isomorphic to a boolean algebra (i.e., the power
set 2[n] for some n) for each x ∈ P . If we regard (the set of faces of) a simplicial
complex as a poset by inclusion, it is simplicial. In general, a simplicial poset is
the set of cells of a regular CW complex of certain type. The next example is a
simplicial poset which is not a simplicial complex. The corresponding CW complex

is a circle consisting of two segments (x and z) and two points (y1 and y2).
Stanley [2] assigned the commutative ring AP to a simplicial poset P . For the

construction, we need preparation. First, for x1, . . . , xm ∈ P , [x1∨· · ·∨xm] denotes
the set of minimal elements of common upper bounds of x1, . . . , xm. If [x ∨ y] 6= ∅
then { z ∈ P | z ≤ x, y } has the largest element x ∧ y. (For the above P1,
[y1 ∨ y2] = {x, z} and y1 ∧ y2 = 0̂. But [x, z] = ∅, and x ∧ z does not exist.) Set
P ∗ := P\{0̂}, and S := K[ tx | x ∈ P ∗ ] the polynomial ring over a field K. Set

fx,y := txty − tx∧y
∑

z∈[x∨y]

tz

for x, y ∈ P ∗. Here we set t0̂ = 1 for the convenience, and if [x ∨ y] = ∅, we have
fx,y = txty. Note that if x and y are comparable, then fx,y = 0. For the ideal

IP := ( fx,y| x, y ∈ P ) ⊂ S,

set AP := S/IP . Let y1, . . . , yn be the rank 1 elements of P , and set ti := tyi for
simplicity. Then IP and AP admit Zn-grading with deg yi = ei ∈ Nn for each i (ei
is the i-th coordinate vector). We regard S and AP are Zn-graded rings in this way.
For our running example P1, writing tx, tz, . . . simply as x, z, . . ., we have

AP1 =
K[y1, y2, x, z]

(y1y2 − x− z, xz)
.



This is a graded ring with deg y1 = (1, 0), deg y2 = (0, 1) and deg x = deg z = (1, 1).
Any Zn-graded prime ideal of S containing IP is of the form

px := (tz | z 6≤ x) + IP

for some x ∈ P . Here p0̂ is the graded maximal ideal (tz | z ∈ P ∗). The quotient
ring S/px is isomorphic to the polynomial ring Sx := K[ti | yi ≤ x]. Let πx : S → Sx

be the natural surjection. For the above P1, we have Sx = K[y1, y2], πx(x) = y1y2
and πx(z) = 0.

Theorem 1. The injective envelope of Sx in the category of Zn-graded S-modules
is given in the following way: For the simplicity, assume that x ∈ [y1∨y2∨· · ·∨ym],
and set P ∗

−x := P ∗ \ {y1, . . . , ym}. As Zn-graded vector spaces, we have

Ex := K[t±1
1 , . . . , t±1

m ]⊗K K[t−1
z | z ∈ P ∗

−x].

Regarding K[t±1
1 , . . . , t±1

m ] as an S-module through πx : S → Sx, Ex is an S ⊗K S-
module. Finally, through the ring homomorphism ∆ : S → S ⊗K S defined by

∆(tz) = tz ⊗ 1 + 1⊗ tz (∀z ∈ P ∗)

for all z ∈ P ∗, we regard Ex as an S-module.

Example 2. For our running example P1, we have

E(S/px) = K[y±1
1 , y±1

2 ]⊗K K[x−1, z−1],

and its module structure is given by

x·(ya1yb2⊗x−cz−d) = ya+1
1 yb+1

2 ⊗x−cz−d+ya1y
b
2⊗x−c+1z−d (if c = 0, then x−c+1 = 0),

z · (ya1yb2 ⊗ x−cz−d) = ya1y
b
2 ⊗ x−cz−d+1 (if d = 0, then z−d+1 = 0),

y1 · (ya1yb2 ⊗ x−cz−d) = ya+1
1 yb2 ⊗ x−cz−d, y2 · (ya1yb2 ⊗ x−cz−d) = ya1y

b+1
2 ⊗ x−cz−d.

If ψ : Ex → Ex′ is Zn-graded, then ψ(1⊗ 1) = c · (1⊗ 1) ∈ Ex′ for ∃c ∈ K, and
hence ψ(Sx) ⊂ Sx′ . Contrary to the Stanley–Reisner case, even if ψ(1⊗ 1) = 1⊗ 1,
ψ is NOT uniquely determined.

Theorem 3. Let φ : Ex → Ex′ be a Zn-graded S-homomorphism with φ(1⊗ 1) =
1⊗ 1. After suitable base change of Ex, we have

φ : Ex 3 1⊗ u 7−→ 1⊗ u ∈ Ex′

for all u ∈ K[t−1
z | z ∈ P ∗

−x] (since P
∗
−x ⊂ P ∗

−x′, u also belongs to K[t−1
z | z ∈ P ∗

−x′ ]).

Using this result, for a Zn-graded dualizing complex ∗D•
S, we can describe ΓIP (

∗D•
S)

explicitly. In this way, we hope argument in [1, 3] for H i
I∆
(S) also work for H i

IP
(S),

but several problems still remain.
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(1) Existence in a very general setting;
(2) Good analytic property, including certain convexity property

and almost everywhere second differentiability;
(3) Recovering the Hilbert-Kunz multiplicity, the F -signature and

the F -threshold;
(4) Multiplicity-like additivity on exact sequences;
(5) Multiplicativity on Segre products.

h-function of local rings of characteristic p

Cheng Meng

Abstract: For a Noetherian local ring R of characteristic p, there 
are two important numerical invariants: Hilbert-Kunz multiplicity and 
the F-signature. They are asymptotic colengths of certain sequences 
of ideals and they quantify the severity of singularities at a point of 
a variety. Actually, the Hilbert-Kunz multiplicity of a ring is always 
a real number at least 1 while the F-signature of a ring is always a 
nonnegative real number at most 1. Whether they are exactly equal 
to 1 characterizes regularity under mild assumptions. They also give 
characterizations of different objects i n c ommutative a lgebra i n char-
acteristic p like the tight closure and the F -regularity.

Although they are important in prime characteristic commutative 
algebra, the concrete computation of the Hilbert-Kunz multiplicity 
and the F-signature is very difficult. In  th e gr aded ca se, th e theory 
of Hilbert-Kunz multiplicity has witnessed two new generalizations in 
recent years: the Hilbert-Kunz density function and the Frobenius-
Poincaré function. The main idea behind these generalizations is that 
instead of computing the total colengths of ideals, we can keep track of 
the colengths in each degree. As the degree grows linearly with the in-
dices of the ideals, the colengths in these degrees possess certain asymp-
totic behavior which is similar to the Hilbert-Kunz multiplicity. The 
study of the Hilbert-Kunz density function and the Frobenius-Poincaré 
function introduces methods in algebraic geometry since taking Proj 
of a standard graded ring gives a projective variety. Therefore, we can 
get a finer description of the Hilbert Kunz multiplicity.

One question arises naturally in the study of the Hilbert-Kunz den-
sity function in graded case: can we find a  c ounterpart i n t he local 
setting? In this talk, we will introduce a numerical invariant called 
h-function that answers this question. It is a function of a real variable 
s that estimates the asymptotic behavior of the sum of an ordinary 
power and a Frobenius power. We will point out that the derivative 
of h-function, which exists almost everywhere, is the local analogue of 
the Hilbert-Kunz density function.

After introducing the h-function, we will mention the following prop-
erties of h-function or functions related to h-function:



There are also other efforts to develop multiplicity-like numerical
invariants in characteristic p. One particular invariant is called the s-
multiplicity which is a mixture of the Hilbert-Samuel and the Hilbert-
Kunz multiplicity. We will show that both the Hilbert-Kunz density
function and the s-multiplicity are equivalent to the h-function, there-
fore the computational result of one of them will give the results of the
other two immediately.



DUAL F -SIGNATURES OF VERONESE SUBRINGS AND SEGRE
PRODUCTS OF POLYNOMIAL RINGS

KOJI MATSUSHITA

This talk is based on [6]. Let (R, m) be a reduced Noetherian local ring of
prime characteristic p > 0 and assume that the residue field R/m is algebraically
closed. In this situation, we can define the e-times iterated Frobenius morphism
F e : R → R (r 7→ rp

e
) for e ∈ Z>0. For an R-module M , let F e

∗M denote the
Frobenius push-forward of M , which is an R-module given by restriction of scalars
under F e (that is, F e

∗M is just M as an abelian group and its R-module structure is
defined by r ·m := F e(r)m = rp

e
m (r ∈ R, m ∈M)). We say R is F -finite if F e

∗R
is a finitely generated R-module. In this talk, we always assume that R is F -finite
and has the canonical module ωR since we only discuss such rings.

In [9], Sannai introduced the following value for an R-module M :

s(M) := lim sup
e→∞

max{N : there is a surjection F e
∗M ↠M⊕N}

rankF e
∗M

. (0.1)

The value s(R) is called the F -signature of R ([5, 12]). In addition, we call s(ωR)
the dual F -signature of R ([9, 11]) and write it by sdual(R).
Regarding s(R) and sdual(R), the following facts are known:

Theorem 0.1 (see [1, 5, 9, 11, 13]). Let (R,m) be a reduced F -finite Cohen–
Macaulay local ring with char R = p > 0 and assume that R/m is an algebraically
closed field. Then we have the following.

(1) 0 ≤ s(R) ≤ sdual(R) ≤ 1.
(2) The following are equivalent:

(a) R is regular;
(b) s(R) = 1;
(c) sdual(R) = 1.

(3) R is strongly F -regular if and only if s(R) > 0.
(4) R is F -rational if and only if sdual(R) > 0.
(5) R is Gorenstein if and only if s(R) = sdual(R).

This theorem shows that s(R) and sdual(R) measure the severity of singularities
of R. Therefore, it is important to determine these invariants and consider what
their explicit values mean. Indeed, F -signatures (resp. dual F -signatures) have been
given for several classes of commutative rings with positive characteristic, see, e.g.,
[3, 4, 5, 10, 13] (resp. [7, 8, 9]).

In this talk, we present new examples where the dual F -signatures are computed.
Let k be an algebraically closed field of prime characteristic p > 0. First, we
completely determine the dual F -signatures of Veronese subrings:



Theorem 0.2. Let Vn,d be the nth Veronese subring of the polynomial ring over k
with d variables. Then we have

sdual(Vn,d) =
1

d

⌈
d

n

⌉
.

This result was proved in a different way at the same time in [2].
Moreover, we give the dual F -signatures of Segre products of two polynomial

rings:

Theorem 0.3. Let Sr1,r2 := k[x1,1, . . . , x1,r1+1]#k[x2,1, . . . , x2,r2+1] with r1 ≤ r2, and
let d = r1 + r2 + 1. Then we have

sdual(Sr1,r2) =

∑r2
l=r1

(
l
r1

)
Al,d(

r2
r1

)
d!

,

where Al,d denotes the Eulerian number, which is the number of permutations of
the numbers 1 to n in which exactly k elements are less than the previous element.

Moreover, we give an upper bound for the dual F -signatures of Segre products
of three or more polynomial rings by using their generalized F -signatures. If time
permits, we will introduce it too.
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An upper bound for the Frobenius number
and stretched numerical semigroups

Kazufumi Eto, Naoyuki Matsuoka,
Takahiro Numata, Kei-ichi Watanabe

LetH be a numerical semigroup, which is a submonoid of N = {0, 1, 2, . . .}
with |N\H| < ∞. The largest integer in Z\H is called the Frobenius number
of H and is denoted by F(H). Determining F(H) is known as the Frobenius
Coin Problem.

Consider H = 〈n1, n2, . . . , ne〉 = {λ1n1 + · · · + λene | λ1, . . . ,λe ∈ N}, a
numerical semigroup, and let k be a field. The rings

k[[H]] = k[[tn1 , . . . , tne ]] ⊆ k[[t]] and k[H] = k[tn1 , . . . , tne ] ⊆ k[t]

are called the numerical semigroup rings of H over k, where t is an indetermi-
nate over k. The Frobenius number F(H) of H corresponds to the a-invariant
of the graded ring k[H], making the Frobenius Coin Problem significant in
both numerical semigroup theory and commutative algebra.

In what follows, H = 〈n1, n2, . . . , ne〉 be a numerical semigroup with
n1 < n2 < · · · < ne. In this talk, we provide a new, simple upper bound for
F(H) under a mild assumption as follows:

Theorem 1. Suppose that gcd(n1, ni) = 1 for some 2 ≤ i ≤ e. Then
F(H) ≤ (n1 − 1)ni − (e− 1)n1.

Additionally, we found that, roughly speaking, the condition that the
ring k[[H]] is stretched imposes a significant restriction on the behavior of
F(H). In order to state our results precisely, we define the notion of stretched
numerical semigroups.

The concept of stretched local rings was introduced by Sally [1]. An
Artinian local ring (A,m) is said to be stretched if µA(m

2) ≤ 1, where µA(X)



denotes the number of a minimal system of generators of A-module X. A
Cohen-Macaulay local ring (A,m) is said to be stretched if there exists a
parameter ideal Q of A such that Q is a reduction of m and A/Q is a stretched
Artinian local ring.

Now, let us consider a numerical semigroup ring k[[H]]. For f ∈ m =
(tn1 , tn2 , . . . , tne), (f) is a reduction of m if and only if v(f) = n1, where v

denotes the discrete valuation on k[[t]]. Therefore, k[[H]] is a stretched local
ring if and only if there exists f ∈ m such that v(f) = n1 and k[[H]]/(f) is
stretched. Regarding this property for k[[H]], we present two examples to be
noticed.

Example 2. (1) Let H = 〈7, 11, 24, 26〉. Then k[H]/(t7) is not stretched,
but k[[H]]/(t7 − t11) is stretched.

(2) Let H = 〈7, 11, 26, 30〉. Then k[[H]]/(t11) is stretched. In this case,
k[[H]]/(t7) is not stretched, while k[[H]]/(t7 − t11) is stretched.

It is unclear if the existence of f ∈ m\m2 such that k[[H]]/(f) is stretched
implies that k[[H]] is stretched in the sense of Sally [1]. Thus, we define
stretched numerical semigroups as follows, removing the assumption on the
value of f :

Definition 3. H is said to be stretched, if k[[H]]/(f) is a stretched Artinian
local ring for some f ∈ m \m2.

We can then state the additional main theorems of this talk:

Theorem 4. Suppose gcd(n1, n2) = 1 and H is stretched. Then

(n1 − e+ 1)n2 − n1 ≤ F(H) ≤ (n1 − 1)n2 − (e− 1)n1.

Theorem 5. Suppose gcd(n1, n2) = 1. Then F(H) attains the upper bound
in Theorem 1 if and only if k[[H]]/(tn2) is stretched.

We also discuss possible values of F(H) for fixed n1 and n2.
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THE V-NUMBERS OF SQUAREFREE MONOMIAL IDEALS

TATSUYA KATAOKA, YUJI MUTA AND NAOKI TERAI (OKAYAMA UNIVERSITY)

In 2020, Cooper, Seceleanu, Toǎneanu, Pinto and Villarreal [2] introduced the no-
tion of the v-number within the context with coding theory. In the field of combinato-
rial commutative algebra, the case that the squarefree monomial case is mainly treated
and the relation with the Castelnuovo-Mumford regularity has been considered; see
[1, 3, 6, 7]. Let us recall the definition of the v-number.

Definition 1.1. Let S = k[x1, . . . , xn] be a polynomial ring with degxi = 1 for all
i ∈ [n] = {1, 2, . . . , n} and let I be a homogeneous ideal of S. The v-number of I is
defined to be

v(I) = min{vP (I) : P ∈ AssS/I}
where vP (I) := min{degf : (I : f) = P}.

Problem 1.2. Let I be a squarefree monomial ideal. When does v(I) ≤ regS/I hold?

First, we obtained a characterization of the v-number of the Stanley–Reisner ideals
of simplicial complexes in terms of their Alexander dual.

Theorem 1.3. Assume P = (x1, x2, . . . , xh) be an associated prime of I∆. Then

vP (I∆) = n−h−max{|∩h
i=1Fi| : Fi ∈ ∆∨ such that {x1, . . . , x̂i, . . . , xh} ⊂ Fi for all i}.

Also, we obtained the v-number with pure height two in terms of graded betti
numbers of k[∆] as a corollary of Theorem 1.3.

Corollary 1.4. Let ∆ be a pure simplicial complex with htI∆ = 2. Then v(I∆) =
min{j : β2,2+j(k[∆]) ̸= 0}.

Moreover, we obtained the v-number of Stanley-Reisner ideals that are 2-Cohen-
Macaulay, in particular, Gorenstein, and of a matroid complex, respectively.

Theorem 1.5. Let ∆ be a (d−1)-dimensional simplicial complex. Then v(I∆) = d if
and only if ∆ is 2-pure, where ∆ is 2-pure means that ∆ is pure and ∆V \{x} = {F ∈
∆ : x /∈ F} is pure with dim∆ = dim∆V \{x} for any x ∈ V . In particular, If ∆ is
2-Cohen–Macaulay, Gorenstein or matroid, then v(I∆) = d.

For a graph theory, Theorem 1.3 provides a lot of corollaries. Let us recall the
structure of very-well covered graphs. Let H be a Cohen–Macaulay very-well covered
graph. Then H(n1, . . . , nd0) to H, where n1, . . . , nd0 are positive integers is defined by

V (H(n1, . . . , nd0)) =
∪d0

i=1

({
xi1, . . . , xini

}
∪
{
yi1, . . . , yini

})
as the vertex set and the

edge set is obtained by replacing the edges x1y1, . . . , xd0yd0 in H with the complete



bipartite graphs Kn1,n1 , . . . , Knd0
,nd0

, respectively. From [4, Theorem 3.5] it is known
that for a very well-covered graph G on the vertex set X[d] ∪ Y[d], there exist positive
integers n1, . . . , nd0 with

∑
i∈[d0] ni = d and a Cohen–Macaulay very well-covered

graph H on the vertex set X[d0] ∪ Y[d0] such that G ∼= H(n1, . . . , nd0). Also, let
us recall the definition of multi-whisker graphs which is introduced in [5]. Let G0

be a graph on the vertex set X[h] = {x1, . . . , xh}. Then the multi-whisker graph
associated with G0 is the graph G = G0[n1, . . . , nh] on the vertex set V (G) = X[h] ∪
Y, where Y = {y1,1, . . . , y1,n1}∪· · ·∪{yh,1, . . . , yh,nh

} and the edge set E(G) = E(G0)∪
{x1y1,1, . . . , x1y1,n1 , . . . , xhyh,1, . . . , xhyh,nh

}.
Corollary 1.6. For a graph G on the vertex set V ,

v(J(G)) = min{|V \ F ∩ F ′| − 2 : there exist {xi, xj} ∈ E(G) and F, F ′ ∈ F(∆(G))

such that xi ∈ F \ F ′ and xj ∈ F ′ \ F},
where F(∆(G)) = {A : A is a maximal independent set of G}.

Corollary 1.7. Let G = H(n1, n2, . . . , nh0) be a very well-covered graph with htI(G) =
h, where H is a Cohen-Macaulay very well-covered graph. Then we have v(J(G)) =
h+min{n1, n2, . . . , nh0} − 2.

Corollary 1.8. Let G = G0[n1, n2, . . . , nh] be the multi-whisker graph associated with
G0. Then we have v(J(G)) = h+min{n1, n2, . . . , nh} − 2.

Moreover, we obtained the v-number of edge ideals of very-well covered graphs and
multi-whisker graphs as a generalization of [3, Theorem 3.20]

Theorem 1.9. Let G be a very well-covered graph. Then we have v(I(G)) ≤ regS/I(G).

Theorem 1.10. Let G = G0[n1, n2, . . . , nh] be the multi-whisker graph associated with
G0. Then we have v(I(G)) = min{|A| : A is a maximal independent set of G0}.
In this talk, we will explain the results discussed above and give the answers to [6,

Question 3.12] and [7, Question 5.5].
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