SPECTRA OF TRIANGULATED CATEGORIES AND THEIR APPLICATIONS TO
AFFINE AND PROJECTIVE VARIETIES

HIROKI MATSUI

This talk is based on joint work with Daigo Ito.

Let X be a quasi-projective variety. Here, a quasi-projective variety is an open subvariety of a projective
variety. For example, affine and projective varieties are quasi-projective. In this talk, we consider Dpf(X ) the
derived category of perfect complexes on X and consider the following question:

Question 0.1. Let X and Y be quasi-projective varieties. If DP*(X) and DP!(Y) are equivalent as triangulated
categories, are X and Y isomorphic?

Balmer ([1]) showed that if the equivalence between DPf(X) and DP!(Y) preserves tensor products, then X
and Y are isomorphic. Balmer’s argument is as follows. For a tensor triangulated category (7,®,1) (i.e., a
triangulated category 7 equipped with a tensor product functor ®), he defined the ringed space

Specg, (T) :={P | P is a prime thick ideal of T},
where a thick subcategory P C T is a prime thick ideal if
o (ideal) forany M € T and N e P, MQ N € P
e (prime) forany M\ N e T,MQ@N e€P=McPor N e€P.
For the tensor triangulated category (DPf(X), ®H@X , 1), it follows that X = Specg, (DPf(X)). Consequently, tensor
preserving equivalence DPf(X) ~ DP!(Y) implies
X = Specg, (D (X)) 2 Specg (D™ (Y)) 2 V.

However, in general, triangulated equivalences between perfect derived categories do not preserve tensor structures.
Therefore, extending Balmer’s theory without using tensor structures is an important problem.
Recently, the author (|2, 3]) defined the ringed space

Speca (T) := {P | P is a prime thick subcategory of T},
where a thick subcategory P C T is a prime thick subcategory if {X C T : thick subcategory | P C X'} has a
smallest element.

If X = Spec(R), Neeman ([4]) proved that there is an order-preserving bijection:
specialization-closed subsets| ., [thick ideals| _ [thick subcategories

of Spec(R) T L of DP(R) [ of DP'(R) '
From this bijection, we obtain isomorphisms Spec(R) 2 Specg (D*'(R)) 2 Spec, (D*'(R)) of ringed spaces. On
the other hand, if X is not affine, the inclusion

thick ideals thick subcategories
of DPF(X) [ = of DPf(X)

is usually strict and hence the structure Spec A (DP!(X)) is more complicated.

The aim of this talk is to study the structure of Spec, (DP (X)) by comparing it with Specg (DP'(X)) = X.
The following result is the main theorem.

Theorem 0.2 ([5]). Let X be a quasi-projective variety. Then there exists an open immersion
X = Specg, (DP (X)) < Spec, (DP (X))
of ringed spaces.

Using this theorem, we obtain several reconstruction results, which give answers to Question 0.1.
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THE FINITENESS OF DIMENSIONS AND RADII OF
SUBCATEGORIES OF MODULES

YUKI MIFUNE

Let R be a commutative noetherian local ring. Denote by mod R the category of
finitely generated R-modules. The concepts of dimensions and radii of subcategories of
modules have been introduced by Dao and Takahashi [4, 5]. These invariants measure
the number of extensions required to generate a subcategory from a single object, up to
direct summands, finite direct sums, and syzygies.

Dao and Takahashi [4] characterized a Cohen-Macaulay local ring with an isolated
singularity by the finiteness of the dimension of the subcategory consisting of maximal
Cohen—Macaulay modules that are locally free on the punctured spectrum. This result
extends a classical result of Auslander, Huneke, Leuschke, and Wiegand [8], which estab-
lishes that finite Cohen-Macaulay representation type implies isolated singularity.

The following result suggests that the category of maximal Cohen-Macaulay modules
generally has a finite dimension [6].

Theorem (Dey, Lank, and Takahashi). Let R be an excellent Cohen—Macaulay local ring
with a canonical module. Then the dimension of the category of maximal Cohen—Macaulay
modules s finite.

On the other hand, there are few subcategories of finite dimension that are strictly
contained in the category of maximal Cohen—Macaulay modules.

Theorem (Dao and Takahashi). Let R be a Cohen—Macaulay local ring.

(1) Let n be a nonnegative integer. Assume that the dimension of CM,, R is finite. Then
the dimension of the singular locus of R s less than or equal to n. In particular,
CM,, R coincides with CM R.

(2) Assume that R is a local hypersurface. Then for any resolving subcategory X of mod R
with add R C X C CM R, the dimension of X is infinite.

Here, the resolving subcategory is a class of subcategories that contains projective
objects and is closed under direct summands, extensions, and kernels of epimorphisms.
It was introduced by Auslander and Bridger [2] and has been thoroughly explored; see
11, 3,7, 10, 11].

In this talk, we define the notion of the radius of two subcategories of modules, which
is a common generalization of the dimension and radius of a subcategory introduced by
Dao and Takahashi. The main results of this talk state the divergence of the radii of some
specific subcategories, and in non-Cohen—Macaulay case, the category C(R), considered
as a counterpart to the category of maximal Cohen-Macaulay modules, is more likely to
be infinite-dimensional.

This talk is based on a preprint [9].
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ON LOCAL RINGS OF FINITE SYZYGY REPRESENTATION TYPE

YUYA OTAKE AND KAITO KIMURA

Auslander [1] proved that a Cohen—Macaulay complete local ring R has an isolated sin-
gularity if R has finite Cohen—-Macaulay representation type. This result is a fundamental
theorem in Cohen-Macaulay representation theory [5, 6] and has been expanded to excel-
lent Cohen-Macaulay rings by Huneke and Leuschke [3]. Recently, Dao and Takahashi [2]
showed that for a Cohen—Macaulay local ring R, if the category of finitely generated maximal
Cohen—Macaulay local rings which are locally free on the punctured spectrum of R has finite
radius, then R has an isolated singularity, and the converse is also true if R is complete,
equicharacteristic and with perfect residue field. In this talk, we consider the finiteness of
dimension of the category of higher syzygy modules over an arbitrary noetherian local ring.
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Prismatic Kunz’s theorem

Ryo Ishizuka (Institute of Science Tokyo)*

This talk is based on joint work with Kei Nakazato [IN24]. Fix a prime number p.
In positive characteristic commutative algebra, Kunz’s theorem characterizes regular
rings by the faithfulness of the Frobenius map:

Theorem (Kunz’s theorem [Kun69]). Let R be a Noetherian ring of positive charac-
teristic p. The following conditions are equivalent:

1. R is a regular ring.
2. The Frobenius map F : R — R is faithfully flat.

3. The canonical map R — Rpe = colimp R is faithfully flat.

This is a starting point for the study of singularities in positive characteristic by
using the Frobenius map. Bhatt-Iyengar-Ma generalized Kunz’s theorem by focusing
on the perfectness of the perfect closure R instead of the Frobenius map. They
obtained the following p-adic version of Kunz’s theorem:

Theorem (p-adic Kunz’s theorem [BIM19]). Let R be a Noetherian ring whose Jacob-
son radical contains p. The following conditions are equivalent:

1. R is a regular ring.

2. There exists a perfectoid ring A and a faithfully flat ring map R — A.

Very recently, some researchers have been trying to generalize positive characteristic
singularities (e.g., F-pure singularity) to mixed characteristic using perfectoid rings
[BMP+24] as in the p-adic Kunz’s theorem. On the other hand, it was not clear how
to generalize Kunz’s theorem using the “Frobenius map”. Recently, Bhatt pointed
out that the “Frobenius map” can be generalized to mixed characteristic using the
prismatic theory introduced by Bhatt—Scholze [BS22]:

Slogan (cf. [Bha22, Remark 5.6]). Let R be a “good” Noetherian local ring of residue
characteristic p. The “mized characteristic Frobenius map” on R is the Frobenius lift
@ on Agya, the prismatic cohomology of R as an A/I-algebra with a prism (A, I).

In this context, we proved a mixed characteristic version of Kunz’s theorem using
the “mixed characteristic Frobenius map”:

Main Theorem ([IN24]). Let (R,m, k) be a complete Noetherian local ring of residue
characteristic p. Then there exists a prism (A,I) and a surjective ring map A — R
such that A is an unramified complete regular local ring and dim(A) = emdim(R) + 1.
The following conditions are equivalent:

1. R is a regular local ring.
2. The Frobenius lift o: Agja — paBrsa of the 0-A-algebra Agy 4 is faithfully flat.

In this talk, we introduce p-adic Kunz’s theorem by Bhatt-Iyengar-Ma and explain
our main theorem.
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EXAMINING KEMPE EQUIVALENCE VIA COMMUTATIVE ALGEBRA

AKIYOSHI TSUCHIYA

This talk is based on joint work with Hidefumi Ohsugi [3].

A k-coloring f of a graph G on the vertex set [d] := {1,2,...,d} is a map from [d] to
[k] such that f(i) # f(j) for all {i,j} € E(G). The smallest integer % (G) such that G has
a % (G)-coloring is called the chromatic number of G. Given a k-coloring f of G, and
integers 1 <i < j <k, let H be a connected component of the induced subgraph of G on
the vertex set f~!(i)U f~!(jj). Then we can obtain a new k-coloring g of G by setting

f(x) x¢H,
gx)=141i x € H and f(x) = j,
J x € H and f(x) =1.

We say that g is obtained from f by a Kempe switching. Two k-colorings f and g of G are
called Kempe equivalent, denoted by f ~ g, if there exists a sequence fy, f1,..., fs of k-
colorings of G such that fy = f, f; = g, and f; is obtained from f;_; by a Kempe switching.
Let denote %%(G) the set of all k-colorings of G. Then ~ is an equivalence relation on
%¢1(G). The equivalence classes of 6;(G) by ~ are called the k-Kempe classes. We
denote kc(G, k) the quotient set 6%(G)/ ~y and denote Kc(G, k) the number of k-Kempe
classes of G, namely Kc(G, k) = |ke(G,k)|. Kempe switchings have been introduced by
Kempe in the false proof of the 4-Color Theorem. However, his idea is powerful in graph
coloring theory. Recently, many researchers have studied Kempe switchings and Kempe
equivalence. See [1] for an overview of Kempe equivalence.

Let G be a graph on the vertex set [n] with the edge set E(G). Given a subset S C [n],
let G[S] denote the induced subgraph of G on the vertex set S. A subset S C [n] is called a
stable set (or an independent set) of G if {i, j} ¢ E(G) for all i, j € S with i # j. Namely,
a subset S C [n] is stable if and only if G[S] is an empty graph (i.e., a graph with no
edges). In particular, the empty set @ and any singleton {i} with i € [n] are stable. Denote
S(G) ={S1,...,Sn} the set of all stable sets of G. Given a subset S C [n], we associate
the (0,1)-vector p(S) = Y jcse;. Here e; is the jth unit coordinate vector in R". For
example, p(0) = (0,...,0) € R*". Let K[t,s] := K[t1,...,1,,s] be the polynomial ring in
n+ 1 variables over a field K. Given a nonnegative integer vector a = (a,...,a,) € Z2,
we write t? :=#{11)? - --t% € K[t,s]. The stable set ring of G is

K[G] := K[t*Vs, ... t*Sms] c K[t, s].

We regard K[G] as a homogeneous algebra by setting each deg(tP(S)s) = 1. Note that
K|G] is a toric ring. Let K[x] := K|[x1,...,x,] denote the polynomial ring in m variables
over K with each deg(x;) = 1. The stable set ideal I of G is the kernel of the surjective
homomorphism 7 : K[x] — K[G] defined by mt(x;) = tP(S)s for 1 < i < m. Note that I
is a toric ideal, and generated by homogeneous binomials. The toric ring K[G] is called



quadratic if Ig is generated by quadratic binomials. We say that “I; is generated by
quadratic binomials” even if I = {0} (or equivalently, G is complete). It is easy to see that
ahomogeneous binomial x;, - - -x;, —x;, - - -x;, € K[x] belongs to I if and only if Jj_, S;, =
Uy—1 Sj, as multisets. In [2], the authors showed that I is generated by binomials Xy — X,
associated with k-colorings f and g of a replication graph of an induced subgraph of G,
and found a relationship between Kempe equivalence on G and an algebraic property
of Ig. In particular, by using the proof of [2, Theorem 1.3], we can examine if two k-
colorings of G are Kempe equivalent by using /5. However, /; has too much information
for this purpose. In this talk, we introduce a simpler ideal Js, which is generated by
binomials X — X, associated with 2-colorings f and g of an induced subgraph of G, to
determine Kempe equivalence on G. We call Jg the 2-coloring ideal of G. Then our first
main result is the following:

Theorem 0.1. Let G be a graph on [d] and let f,g be k-colorings of G. Then f ~y g if
and only if Xy — X, € Jg.

Next, we compute all k-colorings of a graph G up to Kempe equivalence by virtue of
the algebraic technique on Grobner bases. Namely, a complete representative system for
ke(G, k) is given. For this, we introduce another ideal K¢ defined by

K¢ :=Je + Mg,

where
Mg = (xsx7 | S,T € S(G),SNT # 0).
The ideal K is called the Kempe ideal of G. Then our second main result is the following:

Theorem 0.2. Let G be a graph on [d] and < a monomial order on R[G], and let {xy,,...,Xy,}
be the set of all standard monomials of degree k with respect to the initial ideal in- (Kg).
Then

i, fs1NE(G)

is a complete representative system for kc(G, k).

As a consequence, the number of k-Kempe classes Ke(G, k) can be computed by Hilbert
functions.
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A LINEAR VARIANT OF THE NEARLY GORENSTEIN PROPERTY

SORA MIYASHITA

1. NEARLY GORENSTEIN RINGS AND ITS MILD GENERALIZATION ON CERTAIN RINGS

We refer to R as a graded ring with the assumption that R = @, ., R, and Ry = k,
where k is a field. Additionally, we assume R is Cohen-Macaulay and admits a canonical
module wg. Define the trace of wg as trr(wr) = 3 scnompy(we.r) P(Wr). Let mp denote
the unique graded maximal ideal of R.

Definition 1 ([1]). If trp(wg) D mg, we say that R is nearly Gorenstein.

A graded ring R is standard graded if R = k[R;], and semi-standard graded if R
is finitely generated k[R;]-module. The author introduced the following condition.

Definition 2 (]2]). Let R be a Cohen-Macaulay semi-standard graded ring. We say that
R satisfies (4) if \/(trr(wr))1 R D mg. Note that the following hold:

R is nearly Gorenstein = R satisfies (i) = R is Gorenstein on the punctured spectrum.

2. MAIN RESULTS

Given positive integer k > 0, the subring R*® := @nzo Ry, is called the k-th Veronese
subring of R. Let a(R) denote the a-invariant of R. The purpose of this talk is to explain
the following two statements via some concrete examples.

Theorem 3. Let R be a Cohen—Macaulay semi-standard graded ring satisfying (8). Then
the following statements hold:
(1) R™® satisfies (§) for any k > 0.
(2) Assume R is standard graded with dim R > 0. Then the following is true:
(a) If R satisfies (1), then R™ is nearly Gorenstein for any k > a(R/trgr(wg)1 R);
(b) If R is nearly Gorenstein, then R%) is nearly Gorenstein for any k > 0.

Theorem 4. Let R be a Cohen—Macaulay semi-standard graded domain (or level ring ).
If R satisfies (), there exists kg > 0 such that R® is nearly Gorenstein for all k > kg.
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