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1. Camassa-Holm equation and the p-Camassa-Holm

equation
Camassa-Holm equation u; — Uz = —3uty + 2UpUyy + Ulgys OF

1
g+ utty + 0y (1 —92) 7! [u2 + 2u3} =0.

Shallow water wave, bi-Hamiltonian structure, integrability,...



1. Camassa-Holm equation and the p-Camassa-Holm
equation
Camassa-Holm equation u; — Uz = —3uty + 2UpUyy + Ulgys OF

1
g+ utty + 0y (1 —92) 7! [u2 + 2u§} =0.

Shallow water wave, bi-Hamiltonian structure, integrability,...

-Camassa-Holm equation (uCH
() — Upgr = —20(U) Uy + 2Ug gy + Ulgyy, T € St = R/Z,
w(p) == /1 o(z)dz (u for mean value).
S
Liquid crystal, group of diffeos of S, ...
Set A(p) = (@) — @zz, then uCH is

1 .
g + Uty + Oy A1 [2,u(u)u + 2uj] =0.



2. p-equations

#(‘P) = 51 gp(m) dz, A(SO) = M(‘P) — Prx-

p-Camassa-Holm equation (uCH) by Khesin-Lenells-Misiotek

1
g+ utty + 0, AT [2u(u)u+ QUi] =0.

u-Degasperis-Procesi equation (uDP) by Lenells-Misiotek
ut + uty + 0, A7 [Bu(u)u] = 0.

Higher order u-Camassa-Holm equation by Wang-Li-Qiao

1
Up + utiy + 0, B! 2p(u)u+ 5u2

> — U Uggy — iu:%l, =0,
B(p) = () + (02 + 0y,



3. Pseudodifferential operators

(1= pla) = o= [ (1+€) " p()de.

A(p) = () = puz, where pu(u) = [ udz,
For ¢ = 3" cz are? ™, we have u(p) = ag and

Alp) =ao+ Z 42k ape?* e ord =2
k0

A7 —ao+Z ST ord =2,
k;é()

The action is diagonal.
Some authors describe A~! in terms of an integral kernel, but the
series expression is simpler.



4. Formulation of IVPs

CH and pCH involves a pseudodifferential operators (Fourier
multipliers)
-1
A=[ut)-22]
So research must be GLOBAL in x
IVP )
g+ utg + 0y AT [Q,u(u)u—l— 2“2] =0,
u(0,z) = ug(x)
can be solved LOCALLY or GLOBALLY in .
CK (Ovsyannikov) type time-local argument is possible.

Solution in a suitable space of functions on S..
Things are global in x, while they can be either local or global in t.



5. IVP in Sobolev spaces: known results

Consider initial value problems for 4CH, uDP, the higher-order
1CH.

Let up(x) be the initial value.

Local(-in-time) well-posedness and global existence in H*(S!) (s is
sufficiently large) has been established by Khesin-Lenells-Misiotek
2008, Lenells-Misiotek-Tigray 2010, Wang-Li-Qiao 2018.

For global(-in-time) existence, we assume that (11— 92)ug(z) does
not change signs in the cases of uCH and uDP.

This is inspired by the result about the original CH: assumption is
that (1 —02)ug(x) (the McKean quantity) does not change signs.



6. Local and global analyticity

THE GOAL OF THIS TALK IS:

IVP for uCH, uDP, the higher-order CH with analytic initial value
(with some technical assumptions) on S*.

= Unique existence of global-in-time analytic solution

Ref: (generalized) CH, Barostichi-Himonas-Petronilho 2017

WHAT REMAINS TO BE PROVED (solvability in H*® is known):
1. analyticity in = (¢ > 0 fixed)«— Kato-Masuda theory
2. analyticity in ¢ and z, local in ¢
+ Cauchy-Kowalevsky (Ovsyannikov) type argument
3. global analyticity in ¢
4. From ‘'t — wu(t,-) analytic’' (mapping from R, to a function
space in x) to ‘analytic in (¢,z)" (mapping from Rim to C)

@ CK argument alone is not good enough (next slide).



7. CK argument alone is not good enough.

We want to prove global-in-time analyticitiy.
Cauchy-Kowalevsky is local.
We employ the known global-in-time solvability in H®. How?

Let T* be the sup of T such that w is analyticin t uptot="1T.
We want to prove T* = oo by contradiction.
Assume otherwise, i.e. T™ < co.

CK does not guarantee the well-definedness of u(7™),

but the H? solvability implies the existence of u(7™) € H*, which
is analytic in x by the Kato-Masuda theory.

We apply the CK at £ =T and extend the lifespan.

It contradicts the assumption T = ‘sup of lifespan’.



8. Analytic Sobolev spaces on S!

For a function ¢ on S' =R/Z, we set p(k) = Js1 o(x)e 2k dg.
Following Barostichi-Himonas-Petronilho 2015, we introduce

G = {p e L2(8Y); [¢llss < oo}, lplds = D (k)X p (k).
kEZ
G¥ < G5 and G — G0 if0<§ <5 <1,0< s <s.
{G‘S’S} is a (decreasing) scale of Banach spaces.
0<6<1

If o € G%%, then this function on R/Z = S has an analytic
extension to {x+iy € C; |y| < d/(2m)}.
Any analytic function on S* belongs to G%* for some § and any s.

If s>1/2, . 1/

lowllss < csliellssllvllss, cs= [201+5%) > (k)™
k=0



9. Pseudodifferential operators A and A~!

A(p) = () = Pax, where p(u) = [giudz,
For ¢ =Yz are?™®, we have u(p) = ag and

A(p) = ap+ Z A’ k2ape® ™ ord =2
k#£0

A* fa0+z 2k2 e2kFmie ord = —2.
k7£0

A: GO512 5 395 and A1 G9% — G312 bounded.
uCH
1 1
ug + §(u2)x +0,A7! [2,u(u)u+ 2u925] =0.

First-order WDE of the ‘Kowalevski type'.



10. Local analytic CP for uCH
Theorem (Y.)
U+ 3 (u?), + 0, A7 [2u(u)u+%uﬂ =0, (1)
u(0,2) = up(z).
Let s >1/2.
If ug € GA*T1, then there exists a positive time T = T (ug, s, A)
such that for every d € (0,1),

the Cauchy problem (1) has a unique solution in t which is a
holomorphic function valued in GA%5%1 in the disk |t| < T(1—d) .

Ref: CH and similar equations, Barostichi-Himonas-Petronilho
2015



11. Local analytic CP for uCH: proof
Assume A =1 for simplicity. Assume 0 <’ < 4§ < 1.

1
F(u):= —§(u2)5,; — 9, A1 {2,u(u)u+ 2u§]
We want to show that F’ satisfies the Lipschitz-Cauchy estimate:

const.
1E'(w) = F()llss41 < 5 lu=vll5,s+1-

This estimate follows from

2me”
||90x||6’,s < m”@:ﬁ S,s

||‘PxH675 < 27T||S%H5,s+1

_ 2me~!
102 A7 () |57 541 < m”@”&s

and some algebra like u2 —v2 = (u+v).(u—"v)q,

p(u)u—p(v)o = p(u)(u—v) + [p(u) — p(v)]v.



12. Global theory: global solvability in H*

Theorem (Khesin-Lenells-Misiotek)

Let s >5/2. Assume that ug € H*(S') has non-zero mean and
satisfies the condition

(1 —0?)up >0 (or <0).
Then the Cauchy problem for the CH equation

g + uty + 0, A1 [2,u(u)u+ %ug} =0,
U(O,J)) = UO(x)

has a unique solution in C(Ry, H*(S1))NCY(Ry, HS~1(SL)).
Moreover, local well-posedness (in particular, uniqueness) holds.



13. Main result

Theorem (Y.)

Assume that a real-analytic function ug on S* has non-zero mean
and satisfies the condition

(11— 0%)ug >0 (or <0).
Then the Cauchy problem

U+ utly + 0, A1 [2,u(u)u+ %u?z} =0,
u(0,z) = up(x)

has a unique solution 1 € C% (Rt X Sqlﬁ)

Similar statements hold true for yDP and the higher order ©CH.
In the higher order case, ug can be an arbitrary analytic function.



14. Radius of analyticity

S500) ={z=z+iyeCly| <d)},
A(0) = {f: S' =R/Z — R; fhas an analytic continuation to S((S)}.

In the previous theorem, let ug € A(rg). Fix o9 < (logrg)/(27) and
set

K = (20md; 4+ 8+ 4n%cy) [1 + max {||u(t)|2; t € [-T,T]}],

VoY

Y ol 2y (€142 ~ 1),

o(t) =09

Then, for any fixed T' > 0, we have u(-,t) - A(eQWUm) for
te[-T,T).



15. Regularity theorem by Tosio Kato and Kyiliya Masuda 1

Consider the equation

du
dt
Here F is typically a (nonlinear) continuous mapping from Banach
space to another, possibly involving ¥DOs in x.
Kato-Masuda theorem gives some sufficient condition for the

regularity of u(t), ¢ > 0.
If ug is regular to some extent, then so is u(t), ¢t > 0.

F(u), u(0) = up.

Let {®s; —00 < s < oo} be a family of functions on a Banach
space, typically 3| -[|2, where {||-||s}, is a family of norms.

If ®4(u) is bounded, then w is regular in some sense.
So we want bounds on ®,(u) in terms of ug.



16. Regularity theorem by Kato-Masuda 2

X, Z: Banach spaces and Z is a dense subspace of X.

F' : continuous mapping from Z to X.

O: an open subset of Z.

{®Ps;—00 < s < oo} : afamily of real-valued functions on Z.
Assume there exist positive constants K and L satisfying

[(F(v), DBy (v))]| < K®yg(v)+ LPy(0)/20,04(v), v € O.
D: Frechét derivative
(+,-) (no subscript) : the pairing of X and £(X;R).

If du/dt = F(u), u(0,2) = ug(x), then for a fixed constant s
there exists a function s(t) such that

(Ds(t) (u(t)) < (I)S(J</“0)€Kt> te 0,77,

If ug is regular to some extent, then so is u(t), t > 0.



17. Regularity theorem by Kato-Masuda: summary

®, is essentially a norm. ®,(-) = ||-||?/2 for some | -||s.
A bound in terms of @ is a measure of regularity.

it [(F(v), D4 (0))| < K®y(v) + Ly/@y(0) Ds®s(v),

then the solution to

du
5 = Fu), uw(0) =uo

satisfies @y (u(t)) < Py, (ug)e™, t € [0,T7 for some function s(t).
If ug is regular to some extent, then so is u(t), ¢ > 0.

Ref: Kato-Masuda, 1986 (KdV and similar equations, analyticity in
x only, not in t.)



18. Proof of analyticity
1CH obviously has the form du/dt = F(u).
We have to choose SUITABLE FUNCTION SPACES and &, and

then prove

(F(v), DBs(0))] < K®y(v) + Ly/@y(0) D5y (v).

A(d) = {f: S' =R/Z — R; fhas an analytic continuation to |y| < 5}.

. <1 . ;
A(9) is Fréchet . The (semi)norms Hb”fg 9) = ZW‘QMWHUO)H%'
: L 1
7=0
LA I v(@)]|2
Set (b(r,m(v) — ZO ﬁ€4 7’2’2(— (PS)
20

Kato-Masuda = Bounds on @, ,,(u(t)) and ||u(t)||%ﬂ).

G%* and A(6) can be used interchangeably.
G%s C A(6) and A(8) € G¥5(8' < 6).



19. Estimates

Set X = H™t2 7 = g™m+5

m 1 Amo ||U )||2
Ponlv) =2 e

F(u) = —uuy — 0, A" [2 (uw)u+ ;uﬂ
Then, for v € H™1®, we have
[(Fu(v), DPg i (v))]
< const. ||v||2@g m(v) + const.@mm(’1/1)1/2(90@07,”(11).

Kato-Masuda theory works. The solution to pCH IVP satisfies a
bound in terms of @, ,,.

[u(t)[7,4) < oo for some o and u(t) is analytic in z for any ¢ > 0.



20. Estimating (F),(v), D@, (v))

(-,-) is the pairing of H™*2 and (H™*2)* ~ H™*2,
(-,-)o is the H? inner product.

m

(Fu(0): D (0)) = Y- =609 BLF, (o)
j=0""

(0D B F,(v))y =— (WD), 09 (v0))2 — 2() DI A [p(w)0])2

(0,077 AT (0])2.

| =

Estimates by using
e A~l: H5t2 — H? bounded.
o ||p]lo < const.|[llo||e]|s, where || - ||5 is the H® norm.
* [l <v(llellillvlla+ llell2)¢fl1) for some constant >0
(a variant of the Kato-Ponce inequality)

in particular, H? is closed under multiplication.
(The original Kato-Ponce is about the WP and L> norms.)



21. Estimating Z?;()j!’2e4”0j<w(j),&Z.(vvx)}g

We encounter (Leibnitz rule, £ =0 is dealt with separately)

i/

Q=Y <‘2> (W9 pOpU=HDY, - (degree 3)
=1

Apply Schwarz and get |[v\9) |50 @004+ ||5. By Kato-Ponce,

[ 0= g < (Ilo@ o= o+ o 00D )
< 2y ([0 |20~ o + oD 20D 2)

Combining this estimate with the Schwarz inequality, we get

1Qj] < 2mv(Qj1+Qj2),
7 .
Qi1 =0V )2>" (‘;) [0 T=0 |,

(=1

7 .
. J _ .
Qjz=[v 23" (g) [0 o[0T =D 5.

(=1



22,
Set by, = k!~ 1277 ||u(®) ||y (k = 0,1,...,7). Then we have

1
I 4’“’762371 < Zb bebj_y. (degree 3)
(=1
1/2 ~ 1/2
Set B = (zmozﬂ) / :( ]b2> /
B2 ||UH 0'2 m) 2¢0’,m( )’ B2 - ( ) aa—q)o—,m(v).
Repeated use of the Schwarz inequality gives

m

1 m m
Zj' 7"7]@]7 <ZZ[) bgbj 0 < z_: Z

j=17" Jj=14=1

\[bé _, moq 1/2 - _
< BB < BB — <—BB
Z ; /2 — \/6



23. Final part of the proof of the Main result

1. Analyticity in = (¢ > 0 fixed)«— Kato-Masuda, just completed

2. Analyticity in ¢t and z, local in ¢
+ Cauchy-Kowalevsky (Ovsyannikov) type argument

3. Global analyticity in ¢ < combination of 1 and 2
Lifespan< oo leads to contradiction.

4. From ‘t+— u(t,-) analytic’ (mapping from R; to a function
space in x) to ‘analytic in (t,2)" (mapping from R? to C)

The 4th step.
VI'>0,te[-T,T)— u(t,-) € A(dr) is analytic for some d7.

2TCIHFHL(G 1 k).

okl \

L2(S1x[— TT])

We get a bound on HAEU‘ LS x(-TT]) and w is analytic in (t,z)
X|—1,

by Komatsu (1960) or Kotake-Narashimhan (1961).




Thank you very much!

Next year, | will talk about the Camassa-Holm system

3— 1
ug + Butig + (1 —02) 710, | —au + 25u2+§u§,—|—v+21}2 =0,
Ut + g + (uv), = 0,

introduced by R. M. Chen and Y. Liu (2011).



