Local and global analyticity for a generalized Camassa-Holm system

> Hideshi Yamane Kwansei Gakuin University

ICIAM, August 24, 2023

1. (single) Camassa-Holm equation

Camassa-Holm equation $u_t - u_{txx} = -3uu_x + 2u_xu_{xx} + uu_{xxx}$ or

$$u_t + uu_x + \partial_x (1 - \partial_x^2)^{-1} \left[u^2 + \frac{1}{2} u_x^2 \right] = 0 \text{ on } \mathbb{R},$$

where

$$(1 - \partial_x^2)^{-1}\varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (1 + \xi^2)^{-1} \hat{\varphi}(\xi) \, d\xi.$$

Shallow water wave, bi-Hamiltonian structure, integrability,...

variations:

periodic ($x\in S^1$), μ (involves mean value on $S^1\ni x$), Khesin-Lenells-Misiolek. system

2. CH system of R. M. Chen-Y. Liu

Chen-Liu (IMRN 2011)

$$\begin{cases} u_t - u_{txx} - \alpha u_x + 3uu_x - \beta(2u_x u_{xx} + uu_{xxx}) + \rho \rho_x = 0, \\ \rho_t + (\rho u)_x = 0. \end{cases}$$
(1)

Here it is assumed that $u \to 0$ and $\rho \to 1$ hold as $|x| \to \infty$. Set $v = \rho - 1 \to 0$. (1) is equivalent to $\begin{cases}
u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\
v_t + u_x + (uv)_x = 0.
\end{cases}$ (2)

with $u \to 0$, $v \to 0$ as $|x| \to \infty.$

3. Formulation of IVPs

The CH system of Chen-Liu

$$\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0. \end{cases}$$

with $u \to 0$, $v \to 0$ involves the ΨDO $(1 - \partial_x^2)^{-1}$. So research must be GLOBAL in x.

It can be solved LOCALLY or GLOBALLY in t. Solutions in a suitable space of functions on \mathbb{R}_x .

4. Known result: time-global solvability in H^s

Theorem (Chen-Liu 2011)

Assume $0 < \beta < 2$, s > 3/2. If $(u_0, v_0) \in H^s(\mathbb{R}) \times H^{s-1}(\mathbb{R})$ and $\inf_{x \in \mathbb{R}} v_0(x) > -1$, then the IVP for

$$\begin{cases} u_t + \beta u u_x + (1 - \partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3 - \beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right] = 0, \\ v_t + u_x + (uv)_x = 0 \end{cases}$$

with $u(0,x) = u_0$, $v(0,x) = v_0$ has a unique solution (u,v) in $\mathcal{C}([0,\infty), H^s(\mathbb{R}) \times H^{s-1}(\mathbb{R})) \cap \mathcal{C}^1([0,\infty), H^{s-1}(\mathbb{R}) \times H^{s-2}(\mathbb{R})).$

5. Main result: global analytic solution

If the initial data are analytic, then the solution is analytic globally in both t and x. (μ -case is by Y., DCDS 2020) For r > 0, set $S(r) = \{x + iy \in \mathbb{C}; |y| < r\}$ and

$$\begin{split} A(r) = & \{ f \colon \mathbb{R} \to \mathbb{R}; \, f(z) \text{ can be analytically continued to } S(r) \} \\ & \cap \left\{ f \in L^2_{x,y}(S(r')) \text{ for all } 0 < r' < r \right\}. \end{split}$$

Theorem (**Global analyticity**) Assume $0 < \beta < 2$ and $\inf_{x \in \mathbb{R}} v_0(x) > -1$. If $u_0, v_0 \in A(r_0)$ for some $r_0 > 0$,

then the solution (u, v) is analytic in t, x. It belongs to $\oplus^2 \mathcal{C}^{\omega}([0, \infty)_t \times \mathbb{R}_x).$

6. time-local and global analyticity

IVP for the CH system with analytic initial value (with some technical assumptions).

 \Rightarrow Unique existence of a global-in-time analytic solution

Ref: (generalized) CH, Barostichi-Himonas-Petronilho 2017

WHAT REMAINS TO BE PROVED (solvability in H^s is known):

1. local analyticity in t

 \leftarrow Cauchy-Kowalevsky (Ovsyannikov) type argument

2. analyticity in x (t > 0 fixed)

 \leftarrow Kato-Masuda theory. The most difficult part.

3. global analyticity in t

7. A(r) (Fréchet) and $E_{\delta,s}$ (Banach)

Following BHP (with some generalization and a modified notation), we introduce

$$\|f\|_{(\delta,s)} = \sup_{k \ge 0} \frac{\delta^k (k+1)^2 \|f^{(k)}\|_s}{k!} \ (0 < \delta \le 1, s \ge 2).$$

and the Banach space $E_{\delta,s}$ by

$$E_{\delta,s} = \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}); \|f\|_{(\delta,s)} < \infty \right\}.$$

$$\begin{split} E_{\delta,s} \text{ is closed under multiplication.} \\ E_{\delta,s} \text{ is continuously embedded in } A(\delta). \\ \text{Conversely, if } \delta < r/e \text{ then } A(r) \text{ is continuously embedded in } E_{\delta,s}. \end{split}$$

8. Continuity of operations on $E_{\delta,s}$ If $0<\delta\leq 1,\;s\geq 2,$ then

$$||uv||_{(\delta,s)} \le \text{const.} ||u||_{(\delta,s)} ||v||_{(\delta,s)}.$$

If $0 < \delta' < \delta \leq 1$, we have

$$\begin{split} \|\partial_x u\|_{(\delta',s)} &\leq \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)}, \\ \|\partial_x u\|_{(\delta,s)} &\leq \|u\|_{(\delta,s+1)}, \\ \|(1 - \partial_x^2)^{-1} \partial_x^p u\|_{(\delta,s)} &\leq \|u\|_{(\delta,s)} \ (p = 0, 1, 2), \\ \|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s)} &\leq \frac{\|u\|_{(\delta,s)}}{\delta - \delta'}, \\ \|(1 - \partial_x^2)^{-1} u\|_{(\delta,s+2)} &= \|u\|_{(\delta,s)} \ (p = 0, 1, 2), \\ \|(1 - \partial_x^2)^{-1} \partial_x u\|_{(\delta',s+1)} &\leq \frac{1}{\delta - \delta'} \|u\|_{(\delta,s)}. \end{split}$$

9. time-local analytic IVP for CH system

Theorem

Let $0 < \Delta \leq 1, s \geq 2$. If $(u_0, v_0) \in \bigoplus^2 E_{\Delta, s+1}$, then there exists $T_{\Delta} > 0$ such that the IVP the CH system has a unique holomorphic solution valued in $\bigoplus^2 E_{\Delta d, s+1}$ in the disk $D(0, T_{\Delta}(1-d))$ for every $d \in]0, 1[$. (t is near 0)

Method: abstract Cauchy-Kowalevsky. Scales of Banach spaces. (Ovsyannikov, Yamanaka, Trèves)

Ref: CH and similar equations, Barostichi-Himonas-Petronilho 2016

We used $\|\cdot\|_{(\delta,s)}$ to prove local analyticity in *t* (small).

10. New norm $\|\bullet\|_{\sigma,2}$

Next, we want to show analyticity in x (for fixed $t \in \mathbb{R}$). Following Kato-Masuda (1986), set

$$\|f\|_{\sigma,2}^2 = \sum_{j=0}^{\infty} \frac{e^{2j\sigma}}{j!^2} \|f^{(j)}\|_2^2.$$

$$\diamond$$
 Do not confuse $\|ullet\|_{\sigma,2}$ with $\|ullet\|_{(\delta,s)}$.

 $\|\bullet\|_{\sigma,2}$ is useful in the study of analytic functions: If $f \in A(r)$, then $\|f\|_{\sigma,2} < \infty$. (Here $\sigma < \log r$) If $\|f\|_{\sigma,2} < \infty$ for any $\sigma < \log r$, then $f \in A(r)$. We employ $\|\bullet\|_{\sigma,2}$ to prove analyticity in xfor an arbitrarily large (fixed) t. 11. Regularity theorem by Kato and Masuda: outline

Consider the equation

$$\frac{dU}{dt} = F(U), \ U(0) = U_0.$$

Here F is typically a (nonlinear) continuous mapping from a Banach space to another.

Kato-Masuda theorem gives some sufficient condition for the regularity of $U(t),\,t>0.$

If U_0 is regular to some extent, then so is U(t), t > 0.

Let $\{\Phi_{\sigma}; -\infty < \sigma < \infty\}$ be a family of functions related to norms on Banach spaces. (Liapunov family).

 Φ_σ is a measure of regularity. $\Phi_\sigma(U(t))$ can be estimated in terms of $U_0.$

12. Regularity theorem by Kato-Masuda: formulation

X, Z: Banach spaces and Z is a dense subspace of X. F: continuous mapping from Z to X. $\{\Phi_{\sigma}; -\infty < \sigma < \infty\}$: a family of real-valued functions on Z. Assume

$$\begin{split} |\langle F(U), D\Phi_s(U)\rangle| &\leq K\Phi_s(U) + L\Phi_s(U)^{1/2}\partial_s\Phi_s(U) \\ &+ M\partial_s\Phi_s(U). \end{split}$$

D: Frechét derivative

 $\langle \cdot, \cdot \rangle$ (no subscript) : the pairing of X and $\mathcal{L}(X;\mathbb{R})$.

If dU/dt = F(U), $U(0) = U_0$, then for functions s(t), r(t) depending on U_0 we have

 $\Phi_{s(t)}(U(t)) \le r(t), t \in [0,T].$

If U_0 is regular to some extent, then so is U(t), t > 0.

13. Liapunov family: the case of the CH system

The system is asymmetric in (u,v) \Rightarrow asymmetric Liapunov family Set $X = \oplus^2 H^{m+2}$, $Z = \oplus^2 H^{m+4}$,

$$\begin{split} \Phi_{\sigma,m}(u,v) &= \Phi_{\sigma,m}^{(1)}(u) + \Phi_{\sigma,m}^{(2)}(v), \\ \Phi_{\sigma,m}^{(1)}(u) &= \frac{1}{2} \sum_{j=1}^{m+1} \frac{1}{j!^2} e^{2(j-1)\sigma} \frac{\|u^{(j)}\|_2^2}{2}, \\ \Phi_{\sigma,m}^{(2)}(v) &= \frac{1}{2} \sum_{j=0}^m \frac{1}{j!^2} e^{2j\sigma} \frac{\|v^{(j)}\|_2^2}{2}. \\ \|u\|_{\sigma,2}^2 &= \|u\|_2^2 + 2 \lim_{m \to \infty} e^{2\sigma} \Phi_{\sigma,m}^{(1)}(u), \\ \|v\|_{\sigma,2}^2 &= \lim_{m \to \infty} 2\Phi_{\sigma,m}^{(2)}(v) \end{split}$$

Then

and if they are finite, u and v are analytic in x. We want to get bounds on $\Phi_{\sigma,m}(u,v)$ by using KM theory.

14. Rewriting the system

$$F(u,v) = (F_1(u,v), F_2(u,v)),$$

$$F_1(u,v) = -\beta u u_x - (1-\partial_x^2)^{-1} \partial_x \left[-\alpha u + \frac{3-\beta}{2} u^2 + \frac{\beta}{2} u_x^2 + v + \frac{1}{2} v^2 \right],$$

$$F_2(u,v) = -u_x - (uv)_x.$$

Our CH system is

$$\frac{d(u,v)}{dt} = F(u,v)$$

and this is how the Kato-Masuda theory is applied.

15. Kato-Masuda and the CH system

F is a continuous mapping from $\oplus^2 H^{m+4}$ to $\oplus^2 H^{m+2}$. There exist positive constants $K_1,K_2,L_1,L_2,M_1,M_2,M_3$ independent of u,v and σ such that we have

 $\begin{aligned} |\langle F(u,v), D\Phi_{\sigma,m}(u,v)\rangle| \\ &\leq [K_1 + K_2 \| (u,v) \|_3] \Phi_{\sigma,m}(u,v) \\ &+ (L_1 + L_2 e^{\sigma}) \Phi_{\sigma,m}(u,v)^{1/2} \partial_{\sigma} \Phi_{\sigma,m}(u,v) \\ &+ \left[M_1 + (M_2 + M_3 e^{2\sigma}) \| (u,v) \|_3 \right] \partial_{\sigma} \Phi_{\sigma,m}(u,v) \end{aligned}$

for $(u,v) \in \oplus^2 H^{m+4}$.

Kato-Masuda theory works for $d(\boldsymbol{u},\boldsymbol{v})/dt=F(\boldsymbol{u},\boldsymbol{v}),$ which is the CH system.

 \Rightarrow Bounds on $\Phi_{\sigma,m}(u(t),v(t))$ and regularity of the solution (u(t),v(t)).

 $m \to \infty$ and u(t) and v(t) are analytic in x for any t > 0.

16. Estimating $\langle F(u,v), D\Phi_{\sigma,m}(u,v) \rangle$

$$\begin{split} \langle F(u,v), D\Phi_{\sigma,m}(u,v) \rangle \\ &= \sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j F_1(u,v) \rangle_2 + \sum_{j=0}^m \frac{e^{2j\sigma}}{j!^2} \langle v^{(j)}, \partial_x^j F_2(u,v) \rangle_2, \end{split}$$

The bracket on the left-hand side is the pairing of $\oplus^2 H^{m+2}$ and its dual $(\oplus^2 H^{m+2})^* \simeq \oplus^2 H^{m+2}$. $\langle\cdot,\cdot\rangle_2$ is the inner product of H^2 . Estimates by using

 $||fg||_2 \le 8(||f||_2||g||_1 + ||f||_1||g||_2)$ (Kato-Ponce).

 H^2, H^1 norms in RHS. Better than $||fg||_2 \leq \text{const.} ||f||_2 ||g||_2$.

17. Estimating $\sum_{j=1}^{m+1} j!^{-2} e^{2(j-1)\sigma} \langle u^{(j)}, \partial_x^j(uu_x) \rangle_2$ $\sum_{j=1}^{m+1} \frac{e^{2(j-1)\sigma}}{j!^2} \langle u^{(j)}, \partial_x^j F_1 \rangle_2$ involves

$$Q_j = \sum_{\ell=1}^j \binom{j}{\ell} \langle u^{(j)}, u^{(\ell)} u^{(j-\ell+1)} \rangle_2. \quad (\text{degree3})$$

Apply Schwarz and get $||u^{(j)}||_2 ||u^{(\ell)}u^{(j-\ell+1)}||_2$. By Kato-Ponce, $||u^{(\ell)}u^{(j-\ell+1)}||_2 \le 8 \left(||u^{(\ell)}||_2 ||u^{(j-\ell+1)}||_1 + ||u^{(\ell)}||_1 ||u^{(j-\ell+1)}||_2 \right)$ $\le 8 \left(||u^{(\ell)}||_2 ||u^{(j-\ell)}||_2 + ||u^{(\ell-1)}||_2 ||u^{(j-\ell+1)}||_2 \right).$

$$\begin{aligned} & \left| \sum_{j=1}^{\mathsf{We}} \frac{\mathsf{get}}{j!^2} \langle u^{(j)}, \partial_x^j(uu_x) \rangle_2 \right| \\ & \leq 96 \|u\|_3 \Phi_{\sigma,m}(u,v) + \left(16 \|u\|_3 + \frac{32\pi}{\sqrt{3}} e^{\sigma} \sqrt{\Phi_{\sigma,m}(u,v)} \right) \partial_{\sigma} \Phi_{\sigma,m}(u,v). \end{aligned}$$

18. Final part of the proof of the main result

1. analyticity in t and x, local in t

 $\leftarrow \mathsf{Cauchy}\text{-}\mathsf{Kowalevsky}\;(\mathsf{Ovsyannikov})\;\mathsf{type}\;\mathsf{argument}$

- 2. analyticity in x (arbitrarily large fixed t > 0) \leftarrow Kato-Masuda, just completed
- 3. global analyticity in $t \leftarrow$ combination of 1 and 2