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1. Nonlinear Schrödinger equation and a soliton

focusing NLS

iut + uxx+2|u|2u = 0

soliton

u(x, t) =2ηe2iξx−4i(ξ2−η2)t+i(ψ0+π/2)

× sech(2ηx− 8ξηt− 2δ0)

carrier wave (exp, oscillatory) × traveling solitary wave (sech)



2. Long-time asymptotics of soliton equations

As t→ ∞, the solution is asymptotically
a sum of solitons plus a small perturbation.

NLS: Fokas-Its ‘96 (IBVP), Kamvissis ‘95 (IVP)
Toda lattice: Krüger-Teschl ‘09 (IVP)
KdV: Tanaka ‘75 (IVP), Grunert-Teschl ‘09 (IVP)

SOLITON RESOLUTION in recent terminology
(e.g. Terence Tao’s “Why are solitons stable?”, 2009)
Valid for non-integrable equations as well,
but INTEGRABLE ones are particularly important because

• they are model cases

• phase shift can be written down in the inverse scattering
parlance.



3. Integrable Discrete NLS (IDNLS) 1

NLS (focusing)

iut + uxx+2|u|2u = 0

Ablowitz-Ladik (’75)
integrable discrete nonlinear Schrödinger equation (focusing)

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)+|Rn|2(Rn+1+Rn−1) = 0

Both have solitons:
carrier wave (exp, oscillatory)× traveling solitary
wave (sech)



4. Integrable Discrete NLS (IDNLS) 2

Rn(t) = BS (n, t; z1, C1(0)), soliton

z1 = exp(α1 + iβ1), α1 > 0: eigenvalue

C1(0):norming constant (at t = 0)

BS(n, t; z1, C1(0)) = carrier wave× traveling wave

= exp
(
−i[2β1(n+ 1)− 2w1t− argC1(0)]

)
× sinh(2α1)sech[2α1(n+ 1)− 2v1t− θ1].

v1, w1 : written in terms of α1, β1.

θ1 : written in terms of |C1(0)|, α1.

If we multiply C1(0) by another number
⇒ PHASE SHIFT in exp and sech.
It happens when solitons with different velocities collide.



4. Integrable Discrete NLS (IDNLS) 2

Rn(t) = BS (n, t; z1, C1(0)), soliton

z1 = exp(α1 + iβ1), α1 > 0: eigenvalue

C1(0):norming constant (at t = 0)

BS(n, t; z1, C1(0)) = carrier wave× traveling wave

= exp
(
−i[2β1(n+ 1)− 2w1t− argC1(0)]

)
× sinh(2α1)sech[2α1(n+ 1)− 2v1t− θ1].

v1, w1 : written in terms of α1, β1.

θ1 : written in terms of |C1(0)|, α1.

If we multiply C1(0) by another number
⇒ PHASE SHIFT in exp and sech.
It happens when solitons with different velocities collide.



4. Integrable Discrete NLS (IDNLS) 2

Rn(t) = BS (n, t; z1, C1(0)), soliton

z1 = exp(α1 + iβ1), α1 > 0: eigenvalue

C1(0):norming constant (at t = 0)

BS(n, t; z1, C1(0)) = carrier wave× traveling wave

= exp
(
−i[2β1(n+ 1)− 2w1t− argC1(0)]

)
× sinh(2α1)sech[2α1(n+ 1)− 2v1t− θ1].

v1, w1 : written in terms of α1, β1.

θ1 : written in terms of |C1(0)|, α1.

If we multiply C1(0) by another number
⇒ PHASE SHIFT in exp and sech.
It happens when solitons with different velocities collide.



5. IDNLS and its Lax pair

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)+|Rn|2(Rn+1+Rn−1) = 0 (IDNLS)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n-part : Xn+1 =

[
z Rn

Rn z−1

]
Xn

t-part :
d

dt
Xn =

[
a complicated matrix

]
Xn

(IDNLS) is the compatibility condition.



6. Eigenfunctions of the n-part

If Rn → 0 (rapidly) as n→ ±∞, then approximately

Xn+1 ≈
[
z 0

0 z−1

]
Xn. ‘solutions’

[
zn

0

]
,

[
0
z−n

]
There exist eigenfunctions
ϕn(z), ψn(z) in |z| ≥ 1 and ψ∗

n(z) in |z| ≤ 1
which behave like z±n as n→ ±n.

3 solutions in the 2-dimensional solution space.
(There’s another, but we omit it.)
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7. Eigenvalues and the reflection coefficient

On |z| = 1, ∃a(z), b(z) = b(z, t) such that

ϕn(z) = b(z)ψn(z) + a(z)ψ∗
n(z),

If a(zj) = 0 , then a(−zj) = 0.

{±zj,±z̄−1
j } is called a quartet of eigenvalues .

It corresponds to a soliton .

On |z| = 1, the reflection coefficient r(z) is

r(z) :=
b(z)

a(z)



8. Scattering data

Assume a(zj) = 0 (order 1). ±zj is an eigenvalue.
ϕn(zj) = ∃bjψn(zj).

The norming constant is defined by Cj :=
bj

d
dz
a(zj)

Scattering Data� �
{(±zj,±z̄j−1, Cj)}Jj=1, r(z)� �

The potential Rn is said to be reflectionless if r(z) = 0.

Inverse Scattering Transform
The potential Rn is reconstructed from the scattering data.
Done by using a Riemann-Hilbert problem with poles.



9. Initial Value Problem
(Simple) Time Evolution of the Scattering Data� �

Eigenvalues are independent of time.

Cj(t) = Cj(0) exp
(
it(zj − z−1

j )2
)
,

r(z, t) = r(z) exp
(
it(z − z−1)2

)
on |z| = 1,

where r(z) := r(z, 0)� �
Initial Value Problem� �

Initial value Rn(0) determines the scattering data at t = 0.

The scattering data at t > 0 can be calculated.

Potential Reconstruction (RHP). Rn(t) (t > 0) obtained.� �



10. Reflectionless Case
If r(z) = r(z, 0) = 0 ,

Rn(t) = multi-soliton.

It approaches a sum of 1-solitons as t→ ∞.

phase shift (formal proof in Ablowitz-Prinari-Trubatch ’04)

Each term is of the form BS(n, t, zj, pjT (zj)
−2Cj(0))

phase shift
Phase shift is determined by the eigenvalues:

pj :=
∏
k>j

z2k z̄
−2
k , T (zj) :=

∏
k>j

z2k(z
2
j − z̄−2

k )

z2j − z−2
k

The j-th soliton is faster than the (j − 1)-th.



11. Main results (sketched)

What happens as t→ ∞ if there is reflection (r(z) ̸≡ 0)?

SOLITON RESOLUTION
A sum of 1-solitons plus a small perturbation

A new PHASE SHIFT formula involving the REFLECTION
COEFFICIENT r(z).

|n|/t < 2 (the ’timelike’ region)

There is a new factor written in terms of r(z):
BS(n, t, zj, New·pjT (zj)−2Cj(0))

|n|/t ≥ 2

Leading term is the same as in the reflectionless case.
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12. Asymptotic Behavior: r(z) ̸≡ 0
♣ tw is the velocity of the soliton (traveling wave).

|tw(zj)| < 2 Timelike Region: New Phase Shift Formula

Rn(t) = BS
(
n, t; zj, δ(0)δ(zj)

−2pjT (zj)
−2Cj(0)

)
+O(t−1/2).

δ(z) determined by r(z).
pj, T (zj) determined by zk’s (k ≥ j).
zk’s correspond to the j-th and faster solitons.

|tw(zj)| = 2 Leading term remains the same

Rn(t) = BS
(
n, t; zj, pjT (zj)

−2Cj(0)
)
+O(t−1/3).

|tw(zj)| > 2 Leading term remains the same

As |n| → ∞,

Rn(t) = BS
(
n, t; zj, pjT (zj)

−2Cj(0)
)
+O(n−k), ∀k.
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13. Riemann-Hilbert Problems (RHPs)

Γ: oriented contour (the left-hand is the + side).
m(z): unknown matrix, holomorphic in C \ Γ
m±: boundary values on Γ from the ± sides

RHP: m+ = m−v on Γ (v : the jump matrix)

Γ can be DEFORMED.

RHP with poles
If m(z) admits poles, we impose conditions on its residues.

Inverse scattering
1. Jump matrix written in terms of the reflection coefficient.
2. Poles are eigenvalues.
3. Residue conditions written in terms of norming constants.



14. Inv. Scatt./RHP for the focusing IDNLS

m+(z) = m−(z)v(z) on |z| = 1(clockwise),

v(z) =

[
1 + |r(z)|2 e−2φr̄(z)
e2φr(z) 1

]
jump matrix

φ =
1

2
it(z − z−1)2 − n log z phase function!

Res(m(z);±zj) = lim
z→±zj

m(z)

[
0 0

z−2n
j Cj(t) 0

]
, ∀j,

Res(m(z);±z̄−1
j ) = lim

z→±z̄−1
j

m(z)

[
0 z̄−2n−2

j C̄j(t)
0 0

]
, ∀j.

m(z) → I as z → ∞,

Potential Reconstruction Rn(t) = − d

dz
m(z)21

∣∣∣∣
z=0

IVP solved!



15. Different behaviours in different regions, why?
RHP admits contour deformation.
NONLINEAR STEEPEST DESCENT (Deift-Zhou).

φ =
1

2
it(z − z−1)2 − n log z phase function

Geometry of saddle (stationary) points plays an important role.

The curve Imφ(z) = 0 and the saddle points or the

stationary points of higher order.

|n|/t < 2(saddle) |n|/t = 2 |n|/t > 2(saddle)



Thank you very much.

arXiv:1512.01760 [math-ph]


