
GAMES AND ALGORITHMS WITH HOOK STRUCTURE

NORIAKI KAWANAKA

Abstract. In this paper, a maze-like branching structure is called a game or

an algorithm. Branching structures are common in everyday life, in the natu-
ral world, and in mathematics; they are almost everywhere, and are extremely
diverse, so that no single theory could provide a satisfactory description of
them. However, if we restrict our attention to a typical type in some sense,

then a mathematical treatment might be possible.
From such a viewpoint, two extreme cases look interesting; branching struc-

tures which behave chaotically on the one hand, and those which are “solvable”

on the other. In this paper, we introduce a class of elementary examples,
called plain algorithms, belonging to the latter, and begin to explore their
game-theoretical and algorithm-theoretical properties.

1. Abstract algorithms

This section is devoted to introduce the general terminology on algorithms and
games needed in later sections. Explicit examples are given in Sections 8 -11. Let
P be a set, and ϕ : P −→ 2P a map from P to the set 2P of subsets of P . Such
a pair (P,ϕ) will be called an (abstract) algorithm1). The set P and the map ϕ
are called the state space and the branching map, respectively. An element of P is
called a point (or a state) and represents a state of the algorithm. For a state p ∈ P ,
ϕ(p) represents the set of followers of p. Although, in a practical algorithm, such
a set is usually a singleton or empty, we prefer to consider a more general case2).
We often write p → q (or q ← p) for q ∈ ϕ(p), and call an ordered pair p → q an
arrow with origin p. If ϕ(p) = ∅, there exists no follower of p; this means that the
algorithm terminates at p. Such a point p ∈ P is called an end of the algorithm
(P,ϕ). An important property of an actual algorithm is that it terminates after a
finite number of steps for any initial data. We say that an algorithm (P,ϕ) is finite
if, for any p ∈ P , a sequence

(1.1) p = p0 → p1 → p2 → · · · → pi → pi+1 → · · ·
of points of P is always finite, namely we eventually encounter an end pk for some
k. A sequence (1.1) is called a path with origin p. We say that (P,ϕ) is finitely
branching, if, for any p ∈ P , ϕ(p) is a finite set. An arrow p → q is irreducible, if
there exists no path

(1.2) p = p0 → p1 → p2 → · · · → pl = q

of length l ≥ 2. If each arrow appearing in a path (1.1) is irreducible, we say that
the path (1.1) is irreducibly decomposed. If (P,ϕ) is finite and finitely branching,
then, for an arbitrary arrow p → q, there exists an irreducibly decomposed path
(1.2), which is called an irreducible decomposition of the arrow p → q. Although

1991 Mathematics Subject Classification. Primary 05E10, 17B22, 20C30, 20F55, 91A46; Sec-

ondary 05A17, 05C57, 05A19, 20C30, 60C05.

1



2 NORIAKI KAWANAKA

a finite algorithm may be considered as (a model of) an algorithm that terminates
after a finite number of steps, it admits other interpretations. For example, a finite
algorithm (P,ϕ) equipped with a probability measure on each ϕ(p) 6= ∅ (p ∈ P )
may be considered as an algorithm in which a next state of p ∈ P is selected from
the set ϕ(p) according to the probability measure on it. An algorithm of this type
is called a probabilistic algorithm. A finite algorithm may also be considered as a
model of a 2-person game3) in the following way. Each p ∈ P represents a position
of a game. At a position p, ϕ(p) is the set of possible moves for the next player. A
given position p0 may be considered as the opening position. The first player selects
a position p1 ∈ ϕ(p0), and the second player selects a position p2 ∈ ϕ(p1), . . .; the
two players select positions alternatively. The game ends when one of the players
selects an end pn. This eventually occurs by the finiteness of (P,ϕ). The next
player (namely, the first or the second player according as n is even or odd) is the
looser and the other is the winner.

Let us introduce some notation. Given a map ϕ : P −→ 2P , we define maps
ϕk (k = −1, 0, 1, 2, . . .) and ϕ±1 from P to 2P by putting, for p ∈ P ,

ϕ−1(p) = {q ∈ P | q → p}, ϕ±1(p) = ϕ(p) ∪ ϕ−1(p),

ϕ0(p) = {p}, ϕk(p) = ϕ(ϕk−1(p)) (k = 1, 2, 3, . . .).

For example, the algorithm (P,ϕ−1) is obtained from (P,ϕ) by reversing all arrows.
Let (P,ϕ) be an algorithm. Let Q be a subset of P . Defining ϕQ : Q −→ 2Q by

ϕQ(q) = ϕ(q) ∩ Q,

we get an algorithm (Q,ϕQ). We call (Q,ϕQ) (or, simply Q) a subalgorithm of
(P,ϕ). Thus, a subset of the state space P is always considered as the state space
of a subalgorithm. In the particular case when Q is closed under ϕ, namely when
ϕ(q) ⊂ Q holds for any q ∈ Q, we call Q a full subalgorithm. The minimum full
subalgorithm containing p ∈ P is denoted by 〈p〉ϕ, which is also defined by

〈p〉ϕ =
∞∪

k=0

ϕk(p).

We call such an algorithm 〈p〉ϕ a principal algorithm, and p its origin. For two
algorithms (P,ϕ) and (Q,ψ), there exists a unique algorithm (P,ϕ) t (Q,ψ) such
that its state space is the disjoint union P t Q and that it contains both (P,ϕ)
and (Q,ψ) as full subalgorithms. This algorithm is called the disjoint sum of the
algorithms (P,ϕ) and (Q,ψ). The disjoint sum of a family of algorithms is defined
similarly. A non-empty algorithm (P,ϕ) is uniquely decomposed into a disjoint sum
of non-empty full subalgorithms; each component of the decomposition is called a
connected component of (P,ϕ). We say (P,ϕ) is connected, if (P,ϕ) is a connected
component of itself. If (P,ϕ) and (P,ϕ′) are algorithms with common state space
P satisfying ϕ′(p) ⊂ ϕ(p) for any p ∈ P , then we say that (P,ϕ′) is a restriction
of (P,ϕ). We say two algorithms (P,ϕ) and (Q,ψ) are isomorphic, if there exists
a bijective map f : P −→ Q such that f(ϕ(p)) = ψ(f(p)) for any p ∈ P . In that
case, we write (P,ϕ) ∼= (Q,ψ) and call f an isomorphism of algorithms. The sum4)

(P,ϕ)+(Q,ψ) = (P +Q,ϕ+ψ) of two algorithms (P,ϕ) and (Q,ψ) is an algorithm
whose state space P + Q and branching map ϕ + ψ are defined by

P + Q = {(p, q) | p ∈ P, q ∈ Q}



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 3

and

(ϕ + ψ)(p, q) = {(p′, q) | p′ ∈ ϕ(p)} ∪ {(p, q′) | q′ ∈| q′ ∈ ψ(q)}, (p, q) ∈ P + Q.

Namely, a follower of (p, q) in (P + Q,ϕ + ψ) is obtained by replacing either p or q,
but not both p and q, with one of its followers. If (P,ϕ) and (Q, ψ) are connected,
then (P +Q,ϕ+ψ) is also connected. The sum of a family of algorithms is defined
similarly.

2. plain algorithms, diagrams, hooks

Since the notion of an algorithm given in the previous section is too broad for a
serious study, we need to select some special classes. In this section, we introduce
the notion of a plain algorithm in an axiomatic way, and state some of its basic
properties. We also introduce important notions such as diagrams and hooks for a
plain algorithm. See Section 8 for explicit examples related to this section.
We define two algorithms (C0, ω0) and (C1, ω1) by C0 = {0}, ω0(0) = ∅, and C1 =
{0, 1}, ω1(0) = {1}, ω1(1) = ∅. For n ≥ 2, we define an algorithm (Cn, ωn) as the
sum

(Cn, ωn) = (C1, ω1) + (C1, ω1) + · · · + (C1, ω1)
of n copies of (C1, ω1). An algorithm isomorphic to (Cn, ωn) (n ≥ 0) is called an n-
dimensional (hyper) cube, or an n-cube, in short. A 2-cube is also called a square. In
an n-cube (C,ω), there exists a unique point o (resp. e) such that ω−1(o) = ∅ (resp.
ω(e) = ∅); the point o (resp. e) is called the origin (resp. end) of C. The subset
ω(o) of C is called the basis of C. Let (P,ϕ) be an algorithm, and β ⊂ P . If we
have b 6∈ ϕ±1(a) for any a, b ∈ β, then we say that β is independent. An algorithm
(P,ϕ) satisfying the four axioms (P1)-(P4) below is called a plain algorithm.
(P1) Let p ∈ P , and β ⊂ ϕ(p). If β is independent and consists of n elements, then

there exists a unique subalgorithm of (P,ϕ) which is an n-cube with origin p
and basis β.

(P2) Let p, q, s ∈ P . If q ∈ ϕ(p), s ∈ ϕ(q), and s 6∈ ϕ(p), then there exists a unique
r ∈ P such that {p, q, r, s} is a square.

(P3) Let p, s1, s2 ∈ P , and q, r1, r2 ∈ ϕ(p). If both {p, q, r1, s1} and {p, q, r2, s2}
are squares, then we have: r2 ∈ ϕ(r1) ⇐⇒ s2 ∈ ϕ(s1).

(P4) Let p, s ∈ P, q, r, t ∈ ϕ(p), and t 6= q, r. If {p, q, r, s} is a square, then we
have: s ∈ ϕ±1(t) ⇐⇒ q, r ∈ ϕ±1(t).

Note that the axioms (P1)-(P4) are local conditions in the sense that they are
only concerned with a “neighbor” of a point p ∈ P . The purpose of this paper
is to survey global results (such as Theorems 4.1, 4.2, 5.1, 5.2, 7.1 below) derived
from them5). The axiom (P1) says that a plain algorithm is obtained by gluing
n-cubes together for various n (see Fig. 1); (P2) says that a point s ∈ P which
cannot be reached from a point p ∈ P via a single arrow, but can be reached via
two consecutive arrows is an end of a square with origin p (see Fig. 2); (P3) gives a
relation between two squares which have the origin and an arrow in common (see
Fig. 3); (P4) gives a relation between a square and an arrow which have the origin
in common (see Fig. 4; a non-oriented segment in Fig. 4 represents an arrow whose
orientation is unspecified).

By (P1)-(P4), we see that the branching pattern in a plain algorithm is rather
simple. Clearly, an n-cube is plain. The sum of two plain algorithms is plain. We
state some of the basic properties of a plain algorithm.



4 NORIAKI KAWANAKA

p
p pp

@
@@I 6

�
���

⇒

p
p pp

@
@@I 6

�
���

6
@

@@I
@

@@I

6
�

���
�

���

�
���

@
@@I

6

p p

Figure 1. (P1) (n = 3)

p
p p
6
����*

⇒

p
p
6

����*

����*

p

p
p
6

p p

q qq q

s s

r

Figure 2. (P2)

p
p p

p

p
p

@
@@I

6

�
���

6 6
�

���
@

@@I

-
⇔

p
p p

p

p
p

@
@@I

6

�
���

6
-

6
�

���
@

@@I

p p

q q
r1 r1r2 r2

s1 s1s2 s2

Figure 3. (P3)

p
p

p
p p6

�
���

�����*

�
���6

J
J

JJ

⇔ p
p

p
p p6

�
���

�����*

�
���6

XXXXX

p p

q q

r r

s s

t t

Figure 4. (P4)

Proposition 2.1. Let (P,ϕ) be a plain algorithm. We have p 6∈ ϕk(p) for any
p ∈ P and any k ≥ 1.

Proposition 2.2. An end of a connected plain algorithm is unique. In particular,
for any plain algorithm (P,ϕ) and any p ∈ P , an end of 〈p〉ϕ is unique.

Proposition 2.3. Let (P,ϕ) be a finitely branching plain algorithm. Let k be a
positive integer. For any p ∈ P , we have:

ϕk(p) = ∅ ⇐⇒ k ≥ |ϕ(p)| + 1,

where, for a finite set S, |S| denotes the number of its elements. In particular, a
finitely branching plain algorithm is finite6).

A full subalgorithm of a plain algorithm is clearly plain. In particular, a principal
subalgorithm of a plain algorithm is plain. A plain algorithm may also contain a
lot of plain non-full subalgorithms. For example, we have the following result.

Theorem 2.4. Let (P,ϕ) be a plain algorithm. For any p ∈ P , the subalgorithms
ϕ±1(p) and ϕ(p) are both plain. If e is an end of (P,ϕ), then the subalgorithm
ϕ−1(e) is plain.

The next theorem may be called the “fundamental theorem of plain algorithms”.

Theorem 2.5. Let (P,ϕ) be a plain algorithm. For p ∈ P , we put Yp = ϕ(p).
The isomorphism class of the principal algorithm 〈p〉ϕ is uniquely determined by
the isomorphism class of the subalgorithm Yp of P .

The subalgorithm Yp mentioned in Theorem 2.5 is plain by Theorem 2.4, and is
called the diagram of the principal plain algorithm 〈p〉ϕ. In general, an algorithm
isomorphic to the diagram of a principal plain algorithm is called a plain diagram
(or, just, diagram). We define a map Hp = Hp,ϕ : Yp −→ 2Yp by

(2.1) Hp(x) = {x} ∪ ϕ−1
Yp

(x) = {x} ∪ (ϕ(p) ∩ ϕ−1(x)), x ∈ Yp.



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 5

We call Hp the hook map at p, and Hp(x) the hook of x ∈ Yp at p. If |Hp(x)|
is finite, it is called the length of the hook Hp(x). As explained later in Section
8, a Young diagram and its hook (see Fig. 5) can be considered as examples of a
plain diagram and its hook. The set of points q such that p → q is the underlying
set of the algorithm Yp. The set Yp equipped with the hook map Hp is equivalent
to the notion of the plain diagram (Yp, ϕYp). Hence, Theorem 2.5 says that any
information about the principal plain algorithm 〈p〉ϕ can be read off, in principle,
from the “much smaller” set Yp and its hook map Hp

7). Some of the main results
(Theorems 4.1, 4.2, 5.1, 5.2, 7.1) of this paper may be considered as manifestations
of this fundamental principle. We shall come back to this point of view a few times
later.
Under the above notation, let p → q. It can be shown that the diagram Yq of
〈q〉ϕ is obtained by “subtracting” the hook Hp(q) from the diagram Yp of 〈p〉ϕ.
For example, an arrow p → q is irreducible if and only if Hp(q) = {q}, and, in
that case, we have a natural isomorphism Yq

∼= Yp \ {p} as algorithms. Hence,
the irreducible paths with origin p are in 1-1 correspondence with the sequences of
successive subtractions of hooks of length 1 starting from the diagram Yp. We omit
the details for the case |Hp(q)| > 1.

3. Dynkin diagrams, (G,K)-quotients

In Sections 3 -7, we shall describe various properties of a plain algorithm. Readers
who want to see explicit examples are referred to Sections 8 -11. Let (P,ϕ) be a
connected finitely branching plain algorithm8). By Propositions 2.2 and 2.3, there
exists a unique end e of P . By Theorem 2.4, the algorithm ϕ−1(e) is plain. Hence,
each connected component Pi1 (i1 ∈ I) of it has a unique end ei1 . By Theorem 2.4,
the algorithm Pi1 ∩ϕ−1(ei1) is plain. Hence, each connected component Pi1i2 (i2 ∈
Ii1) of it has a unique end ei1i2 . Repeating the similar procedure as far as possible
(may be an infinite number of times), we get connected plain subalgorithms

Pi1i2···ik
, i1 ∈ I, i2 ∈ Ii1 , . . . , ik ∈ Ii1i2···ik−1 , k ≥ 1

and their ends ei1i2···ik
. Clearly, αi1i2···ik

= (ei1i2···ik
→ ei1i2···ik−1) (ei1i2···ik−1 = e

if k = 1) is an irreducible arrow. Consider a graph9) D(P ) = D(P,ϕ) with vertices
αi1i2···ik

(k ≥ 1) and edges {αi1i2···ik
, αi1i2···ik−1} (k ≥ 2). Adjoining a new vertex

α∗ and new edges {αi1 , α∗} (i1 ∈ I) to D(P ), we get a graph D(P )∗ = D(P,ϕ)∗. In
order to be able to read off the direction of arrows from D(P )∗, we denote the vertex
α∗ (resp. vertices other than α∗) by a white node (resp. black nodes). We call
D(P )∗ the Dynkin diagram of (P,ϕ)10). See Fig. 8 for an explicit example. The
Dynkin diagram does not determine the isomorphism class of the corresponding
algorithm; it gives merely a coarser classification. Let P be a non-connected plain
algorithm. The Dynkin diagram D(P )∗ of P is, by definition, the disjoint union of
the Dynkin diagrams of the connected components of P . The definition of D(P )
is similar. If one consider a graph E(P ) = E(P,ϕ) with vertices ei1i2···ik−1 (k ≥ 1)
and edges αi1i2·ik

(discarding the directions), then it is naturally isomorphic to
D(P )∗.

Proposition 3.1. Let (P,ϕ) be a finitely branching plain algorithm. Let p ∈ P .
We denote by E(Yp)∗ the graph obtained from the graph E(Yp) by adjoining a new
vertex ∗ and a new edges {eYp,j , ∗} (j ∈ J), where eYp,j (j ∈ J) are the ends of Yp.



6 NORIAKI KAWANAKA

We have a natural graph isomorphism from D(〈p〉ϕ)∗ onto E(Yp)∗, which sends α∗
to ∗.

We denote by Π(P ) = Π(P,ϕ) (resp. Π(P )∗ = Π(P,ϕ)∗) the set of vertices of
D(P ) (resp. D(P )∗). Hence, we have Π(P ) = Π(P )∗\{α∗}. We denote by Z+Π(P )
the set of formal sums of elements of Π(P ), and by A(P ) = A(P,ϕ) the set of arrows
of (P,ϕ). We have natural inclusions i : Π(P ) ↪−→ Z+Π(P ) and j : Π(P ) ↪−→ A(P ).

Proposition 3.2. Let (P,ϕ) be a finitely branching plain algorithm. There ex-
ists a unique map F : A(P ) −→ Z+Π(P ) satisfying the conditions (a)(b)(c) below.
Moreover, we have F (p → q) ∈ Π(P ), if (p → q) ∈ A(P ) is irreducible.

(a) i = F ◦ j;
(b) If (p → q), (q → r), (p → r) ∈ A, then we have

F (p → r) = F (p → q) + F (q → r);

(c) If {p, q, r, s} is a square of (P,ϕ) with origin p and end s, then we have

F (p → q) = F (r → s), F (p → r) = F (q → s).

Proposition 3.2 is a result of Jordan-Hölder type for an irreducible decomposition
of an arrow. Under the map F , an irreducible arrow of (P,ϕ) corresponds to an
element of Π(P ), a ‘simple root’ in the terminology of root systems [5]. It can also
be shown that a general (non-irreducible) arrow corresponds to a ‘positive root’.
Later, in Section 7, we use F (p → q) as a weight of an arrow p → q when we
consider a sum over paths. The following proposition indicates another application
of the map F .

Proposition 3.3. Let (P,ϕ) be a finitely branching plain algorithm. For any com-
mutative semigroup G and any map h : Π(P ) −→ G, let h̃ : Z+Π(P ) −→ G be the
extension of h to a semigroup homomorphism. Let F : A(P ) −→ Z+Π(P ) be as
in Proposition 3.2. We define f : A(P ) −→ G by f = h̃ ◦ F . For any subsemi-
group K of G, we put AK(P ) = AK(P,ϕ) = f−1(K) ∩ A(P,ϕ), and define a map
ϕ(G,K) : P −→ 2P by

ϕ(G,K)(p) = {q ∈ ϕ(p) | (p → q) ∈ AK(P,ϕ)}.
The restriction (P,ϕ(G,K)) of (P,ϕ) is a finitely branching plain algorithm. In
particular, the algorithm 〈p〉ϕ(G,K) has a unique end.

Since two algorithms (P,ϕ(G,K)) and (P,ϕ) have the state space P in common,
we can consider two diagrams ϕ(G,K)(p) and ϕ(p) = Yp for a point p ∈ P . The
former is called the (G,K, h)-quotient (or (G,K)-quotient, in short) of the latter.
The end of 〈p〉ϕ(G,K) is called the (G,K, h)-core (or (G,K)-core in short) of p. In
the special case when G = 〈g〉 is the cyclic group of order n, h is defined by

h(p → q) = g, (p → q) ∈ Π(P,ϕ),

and K is the trivial subgroup of G, we also use the notation ϕn for ϕ(G,K). The
map ϕn : P −→ 2P can also be defined by

(3.1) ϕn(p) = {q ∈ ϕ(p) | |p → q| ≡ 0 mod n}, p ∈ P

where |p → q| denotes the number of irreducible arrows contained in a irreducible
decomposition of p → q. The diagram ϕn(p) (resp. the end) of 〈p〉ϕn , which is
a special cases of the (G,K)-quotient (resp. the (G,K)-core) is also called the n-
quotient of the original diagram ϕ(p) (resp. the n-core of p). This generalizes the



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 7

notion of n-quotient (resp. n-core) in the theory of Young diagrams (see Section
8). The notion of (G, K)-quotient for a non-cyclic group G will be used, in Section
4, to analyze a plain algorithm considered as a 2-person game.

4. Plain algorithms as 2-person games

See Section 8 for explicit examples related to this section. Let (P,ϕ) be a finitely
branching plain algorithm. Let n ≥ 2 be a natural number. In view of the notion of
n-quotient introduced in the previous section, it is natural to consider the following
“n-adic expansion”. We define a map E

(n)
ϕ : P −→ N = {0, 1, 2, . . .} by

(4.1) E(n)
ϕ (p) =

∞∑
i=0

niε
(n)
ϕ,i (p), p ∈ P,

where ε
(n)
ϕ,i (p) ∈ {0, 1, 2, . . . , n − 1} is an analogue of the coefficient of ni in the

n-adic expansion of a natural number, and is defined by11)

ε
(n)
ϕ,0 ≡ |ϕ(p)| mod n

and
ε
(n)
ϕ,i+1 = ε

(n)
ϕn,i, i = 0, 1, 2, . . .

using (3.1). We call E
(n)
ϕ the n-adic expansion function of (P,ϕ). Unlike the n-adic

expansion of a natural number, the value of E
(n)
ϕ at p ∈ P is, in general, depends

on n. For a general n, we know very little about E
(n)
ϕ . But, as shown in Theorems

4.1 and 4.2 below, the 2-adic expansion function E
(2)
ϕ contains decisive information

of (P,ϕ) as a 2-person game.

Theorem 4.1. Let (P,ϕ) be a finitely branching plain algorithm, and E
(2)
ϕ its

2-adic expansion function. Let p ∈ P . We have:

(i) there exists a point q ∈ ϕ(p) such that E
(2)
ϕ (q) = k for an integer k satisfying

0 ≤ k < E
(2)
ϕ (p);

(ii) E
(2)
ϕ (p) 6= E

(2)
ϕ (p′) for p′ ∈ ϕ(p);

(iii) E
(2)
ϕ (p) = 0, if and only if there exists a winning strategy12) for the second

player in the 2-person game (P,ϕ) with opening position p ∈ P ; otherwise,
there exists a winning strategy for the first player.

Theorem 4.1 (i)(ii) states that E
(2)
ϕ (p) is nothing but the Sprague-Grundy num-

ber13) of the position p ∈ P . Perhaps it is worthwhile to remark that nim addi-
tion14) closely related to the Sprague-Grundy theory is apparently not needed in
formulating or proving Theorem 4.1 (and Theorem 4.2 below). In a sense, getting
a formula for the Sprague-Grundy number, as in Theorem 4.1, is not good enough;
even if we had one, at a given winning position of one of the players, the search
of next good moves for that player often needs a lot of calculation involving trial
and error15). Fortunately, for the game (P,ϕ) in Theorem 4.1, we need not rely on
trial and error, since there exists a more straightforward way described in Theorem
4.2. The notion of (G,K)-quotient turns out to be very useful here. Let G be
Klein’s four group, which is the simplest non-cyclic group. To fix notation, we put
G = 〈a, b〉 with fundamental relations a2 = b2 = 1, ab = ba. Since the Dynkin
diagram D(P,ϕ)∗ is a tree, we can define, for two vertices v, w of D(P,ϕ)∗, the



8 NORIAKI KAWANAKA

distance d(v, w) as the number of edges between them. For α ∈ Π(P,ϕ), we define
a map h : Π(P,ϕ) −→ G by

(4.2) h(α) =

{
a, if d(α, α∗) is odd;
b, if d(α, α∗) is even.

The group G has three non-trivial proper subgroups, which are the cyclic sub-
groups 〈a〉, 〈b〉 and 〈ab〉. Thus, applying the general construction in the previous
section, we get the finitely branching plain algorithms (P,ϕ(G,〈a〉)), (P,ϕ(G,〈b〉)),
and (P,ϕ(G,〈ab〉)), and the corresponding n-adic (in particular, 2-adic) expansion
functions E

(n)
ϕ(G,〈a〉) , E

(n)
ϕ(G,〈b〉) , and E

(n)
ϕ(G,〈ab〉)

16). The next theorem gives an efficient
method for the search of good moves. (Although we have stated the above theorem
before the next one, the order of proofs are different; we first prove Theorem 4.2
below, and then prove Theorem 4.1 using Theorem 4.2.)

Theorem 4.2. Let (P,ϕ) be a finitely branching plain algorithm. Let G = 〈a, b〉 be
Klein’s four group. Let ϕ(G,〈a〉), ϕ(G,〈b〉) and ϕ(G,〈ab〉) be the branching maps from
P to 2P defined above using the map h : Π(P,ϕ) −→ G given by (4.2).

(i) For p ∈ P , we have:

E(2)
ϕ(G,〈ab〉)

(p) = E(2)
ϕ(G,〈b〉)

(p) =
∞∑

i=0

2iε
(2)
ϕ,i+1(p),

and

E(2)
ϕ(G,〈a〉)

(p) = ε
(2)
ϕ,0(p) +

∞∑
i=1

2iε
(2)
ϕ,i+1(p).

(ii) For p ∈ P and a non-negative integer t, we put17)

A(ϕ; p; t) = {q ∈ ϕ(p) | E(2)
ϕ (q) = t}.

Let t =
∑∞

i=0 2iti (ti = 0, 1) be the 2-adic expansion of t. We have:

A(ϕ; p; t) =


A(ϕ(G,〈ab〉); p; (t − t0)/2), if ε

(2)
ϕ,0(p) = t0;

A(ϕ(G,〈a〉); p; (t − 2t1 + t0)/2), if ε
(2)
ϕ,0(p) 6= t0 and ε

(2)
ϕ,1(p) = t1;

A(ϕ(G,〈b〉); p; (t − t0)/2), if ε
(2)
ϕ,0(p) 6= t0 and ε

(2)
ϕ,1(p) 6= t1.

Theorem 4.2(ii) claims that, for a given p ∈ P , the problems concerning the
values taken on ϕ(p) of the 2-adic expansion function E

(2)
ϕ of (P,ϕ) can be reduced

to similar problems for the 2-adic expansion functions of the three restrictions
(P,ϕ(G,〈a〉)), (P,ϕ(G,〈b〉)) and (P,ϕ(G,〈ab〉)) of (P,ϕ). This process may be iterated,
and, after a finite number of iterations, the original problems are reduced to trivial
ones. In particular, by Note 12), the application of this method in the case t = 0
leads to an efficient method for the search of good moves. An explicit example is
given in Section 8.

For a general finite algorithm viewed as a 2-person game, it is easy to see, by
induction, that one of the player has a winning strategy. But, if the game is getting
somewhat complex, then to decide which player has a winning strategy and to
describe an explicit winning strategy soon require too much computation even for
a computer. The games we considered in this section are rather exceptional, because
we can rapidly achieve the same purpose using Theorems 4.1 and 4.2. This fact may
be seen as a manifestation of the fundamental principle mentioned after Theorem



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 9

2.5. A plain algorithm as a 2-person game might be considered as an example
of completely solvable games in the sense that it can be analyzed completely and
efficiently. There remains much to be done in this area, as can be seen, for example,
from a recent work of T. Kayada [10] on the ‘Sato-Welter game of height k’.

5. Probabilistic algorithms and Peterson’s hook-length formula

In this section, we reformulate the main result of S. Okamura [15] in terms of the
theory of plain algorithms. An explicit example is given in Section 10. Let (P,ϕ)
be a finitely branching plain algorithm. We define a map ϕirred : P −→ 2P by

ϕirred(p) = {q ∈ ϕ(p) | p → q is an irreducible arrow}.

By Proposition 2.3, (P,ϕ) is finite. Hence, (P,ϕirred) is also a finite algorithm.
The ends of (P,ϕ) coincide with those of (P,ϕirred). If p ∈ P is not an end, we
define a probabilistic measure on ϕirred(p) as follows. Adjoining a new point ∗ (see
Proposition 3.1) to the set Yp = ϕ(p) 6= ∅, we define Y ∗

p = {∗} t ϕ(p). We also
define Kp : Y ∗

p −→ 2Y ∗
p by putting, for x ∈ Y ∗

p ,

Kp(x) =

{
ϕ(p), if x = ∗;

ϕ(p) ∩ ϕ−1(x) = Hp(x) \ {x}, if x 6= ∗.

In the algorithm (Y ∗
p ,Kp), we consider a path with origin ∗

∗ = x0 → x1 → x2 → · · · → xm → · · · ,

where, for any m ≥ 0 such that xm is not an end of (Y ∗
p ,Kp), a next point xm+1

is selected from the set Kp(xm) uniform randomly. After a finite number of steps,
the algorithm terminates. This probabilistic algorithm (in the sense of Section 1)
selects an end of (Y ∗

p , Kp) with some probability. Since the set of ends of (Y ∗
p ,Kp)

coincides with ϕirred(p), the probabilistic algorithm (Y ∗
p ,Kp) defines a probabilistic

measure on ϕirred(p) 6= ∅.
For any p ∈ P , the probabilistic algorithm (P,ϕirred) with respect to the above
measure selects a path

(5.1) p = p0 → p1 → p2 → · · · → pl → · · · → pk = e (e is an end of (P,ϕ))

in (P,ϕirred) with some probability. By Proposition 2.3, the length k of a path (5.1)
is |ϕ(p)|.

Theorem 5.1. (Okamura [15]) Let (P,ϕ) be a finitely branching plain algorithm.
Under the probabilistic algorithm (P,ϕirred), the probability with which a path (5.1)
is selected depends only on its origin p, and is equal to

(5.2)

∏
x∈Yp

|Hp(x)|
|Yp|!

.

From Theorem 5.1, we immediately get the following result.

Theorem 5.2. Let (P,ϕ) be a finitely branching plain algorithm. For p ∈ P , the
number of paths in (P,ϕirred) of the form (5.1) is equal to

(5.3)
|Yp|!∏

x∈Yp
|Hp(x)|

.



10 NORIAKI KAWANAKA

Theorem 5.2 is equivalent to the ‘hook-length formula’ due to D. Peterson for
the number of reduced expressions of a miniscule element18) of a Weyl group. (See
[1], where the hook-length formula of Peterson is stated without proof.) As far as
the present author knows, the first written proof of Peterson’s hook-length formula
appeared in the master’s thesis [15] of Okamura. In [15], Theorems 5.1 and 5.2 are
stated and proved using the notion of a d-complete poset, which was introduced
by G. Proctor [16] [17] as a combinatorial counterpart of reduced expressions of a
miniscule element. Further developments of the results in this section are given in
Section 7.

The author does not know whether Theorem 5.1 is an isolated result peculiar to
the probabilistic algorithm mentioned above or just a tiny part of a bigger picture.

6. Classification of principal plain algorithms and their realization
using elements of Coxeter groups

By Theorem 2.5, the classification of principal plain algorithms is reduced to
that of plain diagrams. Since plain diagrams are very special plain algorithms,
this is an essential reduction of the classification problem. On the other hand,
among plain diagrams, principal plain diagrams (namely, plain diagrams which are
principal algorithms) are of fundamental importance. Using Theorem 2.5 again, the
classification of principal plain diagrams is reduced to that of basic plain diagrams
(namely, diagrams of principal plain diagrams). Since basic plain diagrams are
rather special plain diagrams, the classification is further simplified. This process
can be iterated. If we start with a finitely branching principal plain algorithm, then,
after a finite number of iterations of the reduction process, we eventually arrive at
the empty algorithm (∅, ∅). Reversing this, and using Proposition 6.1 below, we
can construct and classify the finitely branching plain algorithms.

Proposition 6.1. Let (Y, µ) be a plain diagram, and (Z, ν) a basic plain diagram.
We have:

(i) If x, y1, y2, y3 ∈ Y are such that yi 6∈ µ(yj), yi ∈ µ±1(x) and yi 6= yj (i 6= j)
for any 1 ≤ i, j ≤ 3, then {x, y1, y2, v} is not a square for any v ∈ Y . In
particular, a plain diagram does not contain a 3-cube.

(ii) If v, y1, y2 ∈ Y satisfy v ∈ µ(y1) ∩ µ(y2), then a point x ∈ Y such that
{x, y1, y2, v} is a square is unique.

(iii) If z1, z2, z3 ∈ Z are such that zi 6= zj (i 6= j), then {z1, z2, z3} is not
independent.

For the classification and the realization of finitely branching plain algorithms, it
is convenient to use the terminology of the theory of Coxeter groups [5]. Let D∗ be
the Dynkin diagram of a finitely branching principal plain algorithm 〈p〉ϕ. Let V
be the real vector space of the formal linear combinations of the set Π∗ of vertices
of D∗. We define an inner product on V , by putting

(6.1) (α, β) =


1, if α = β;

−1/2, if there exists an edge connecting α and β;
0, if there exists no edge connecting α and β

for α, β ∈ Π∗. For α ∈ Π = Π∗ \ {α∗}, we define sα ∈ GL(V ) by

sαv = v − 2(α, v)α, v ∈ V.



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 11

The subgroup W = 〈S〉 generated by S = {sα | α ∈ Π} is a Coxeter group. Let e
be an end of 〈p〉ϕ. For an irreducibly decomposed path

(6.2) p = p0 → p1 → p2 → · · · → pl = e

with origin p, we put, using the map F in Proposition 3.2,

αi = F (pi−1 → pi) (∈ Π), 1 ≤ i ≤ l

and define an element

(6.3) w = sα1sα2 · · · sαl

of W corresponding to the path (6.2). It can be shown that (6.3) is a reduced
decomposition, and that the element w depends only on 〈p〉ϕ and does not depend
on how we select an irreducibly decomposed path (6.2). Conversely, starting from
such an element w ∈ W , we can recover the algorithm 〈p〉ϕ. Let T be the set of
elements of W which are conjugate with elements of S. An element of T (resp. S)
is called a reflection (resp. simple reflection) of W . We put R = Wα∗. For two
elements γ and δ of R, we write δ < γ if

γ − δ ∈ Z+Π, γ 6= δ.

Let J be the set of elements β of Π orthogonal to α∗, and WJ = 〈sθ | θ ∈ J〉
the corresponding parabolic subgroup of W . By a standard result of the theory of
Coxeter groups, each residue class vWJ ∈ W/WJ has a unique representative vJ

such that l(vJsθ) = l(vJ) + 1 for any θ ∈ J (l is the ‘length function’ on W ). We
define a map ρ : Wα∗ −→ 2Wα∗ by

ρ(γ) = {tγ | t ∈ T, tγ < γ}, γ ∈ Wα∗,

and define σ : W/WJ −→ 2W/WJ by

σ(vWJ) = {tvWJ | t ∈ T, l((tv)J) < l(vJ)}, vWJ ∈ W/WJ .

Two algorithms (Wα∗, ρ) and (W/WJ , σ) are naturally isomorphic. The next the-
orem shows how to recover the algorithm 〈p〉ϕ from an element w ∈ W defined by
(6.3) using a path (6.2) in 〈p〉ϕ.

Theorem 6.2. Under the above notation, we have

〈p〉ϕ ∼= 〈wα∗〉ρ ∼= 〈wWJ〉σ.

The next theorem gives a characterization of an element w of a Coxeter group
obtained by (6.2) and (6.3).

Theorem 6.3. Let D∗ be an arbitrary tree graph. Let Π∗ be the set of vertices of
D∗. Let α∗ ∈ Π∗. We put Π = Π∗ \ {α∗}. From these data, we define V, sα ∈
GL(V ) (α ∈ Π), S = {sα | α ∈ Π}, W = 〈S〉, T, and J as above. The set of
elements w ∈ W which are defined by (6.2) and (6.3) from a finitely branching
principal plain algorithm 〈p〉ϕ whose Dynkin diagram is D∗ coincide with the set of
elements w ∈ W satisfying one of the equivalent conditions (a) and (b) given below.

(a) If w = sα1sα2 · · · sαl
is a reduced decomposition in elements of S, then we

have:

sαisαi+1 · · · sαl
α∗ − sαi+1 · · · sαl

α∗ = αi, 1 ≤ i ≤ l.

(b) For an irreducible arrow uWJ → vWJ in the algorithm 〈wWJ〉σ, there
exists an s ∈ S such that suJ = vJ .



12 NORIAKI KAWANAKA

The condition (a) in Theorem 6.3 is essentially the same as the definition [1] of a
miniscule element (restricted to the case of a Weyl group corresponding to a simply-
laced Dynkin diagram) due to Peterson. Hence, a finitely branching principal plain
algorithm can be realized by Theorem 6.2 from a miniscule element w of a Weyl
group corresponding to a simply-laced Dynkin diagram; moreover, the classification
of finitely branching principal plain algorithms is reduced to that of w. Since such
elements w are already classified by Proctor [16], we can say that finitely branching
principal plain algorithms are also classified. We can also use an element w of
a Coxeter group W corresponding to a non-simply-laced Coxeter graph satisfying
the condition (b)19) in Theorem 6.3 to construct a finitely branching principal
plain algorithm. If W is crystallographic, such elements w essentially coincide with
miniscule elements of W classified by J. R. Stembridge [22]. We omit the details of
the non-crystallographic case.

7. Colored hook formula

In this section, we reformulate the main result of K. Nakada [12] in terms of
the theory of plain algorithms. An explicit example is given in Section 11. We
observe that Theorems 5.1 and 5.2 state properties of a plain diagram Yp. As
mentioned in Section 6, the study of plain diagrams is reduced to that of basic
plain diagrams. From this point of view, Okamura and the author examined the
paper [15] and its origin [3] (see Section 10) and found that a rational function
identity that plays a fundamental role in those papers reflects important properties
of basic plain diagrams. Since such an identity can be formulated in terms of plain
diagrams, Okamura and the author conjectured that it must be true for a plain
diagram (and not just for a basic plain diagram). Soon after that, Nakada, using
his own formulation, proved the conjecture, which is Theorem 7.1 below.

Let (P,ϕ) be a finitely branching plain algorithm. Let p ∈ P . For a path

p : p = p0 → p1 → p2 → · · · → pl (l ≥ 0)

with origin p, we define, using the map F : A −→ Z+Π(〈p〉ϕ) in Proposition 3.2, a
polynomial

F(p) =
l∏

k=1

{F (p0 → p1) + F (p1 → p2) + · · · + F (pk−1 → pk)}

in the elements of Π(〈p〉ϕ). (In the case l = 0, we understand that F(p) = 1.)
In Nakada [12], the notion of ‘predominant integral weight’ is introduced for a
non-simply-laced Dynkin diagram, and plays an important role in formulating and
proving the main result. In terms of the theory of plain algorithms, the result of
Nakada [12] (in the simply-laced case) can be stated as follows.

Theorem 7.1. (Nakada [12]) Let (P,ϕ) be a finitely branching plain algorithm.
For p ∈ P , under the above notation, we have the following ‘colored hook formula’:

(7.1)
∑
p

1
F(p)

=
∏

q∈Yp

(
1 +

1
F (p → q)

)
,

where the sum on the left hand side is taken over the set of paths p in (P,ϕ) with
origin p.



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 13

The left hand side of the equality (7.1) is a sum over a “big” set related to the
algorithm 〈p〉ϕ, whereas the right hand side is a product over a “small” set related
to the diagram Yp. Thus, Theorem 7.1 may be seen as another manifestation of the
fundamental principle mentioned after Theorem 2.5.
Taking the sum of the terms of degree −|Yp| of both hand side of (7.1) and spe-
cializing every element of Π(〈p〉ϕ) to 1, we get Theorem 5.2 again. When (P,ϕ) is
a plain diagram, a result equivalent to Theorem 7.1 was obtained in Okamura [15]
using case-by-case checks partly carried out by a computer.

8. The Nakayama algorithm

So far, in the first half (Sections 1-7) of the paper, we described a general theory
of plain algorithms. From now on, in the second half (Sections 8 -11), we shall apply
our theory to a typical example, i.e. the Nakayama algorithm. The present section
corresponds to the general theory in Sections 2-3.

We briefly review the historical background. By the works of G. Frobenius
and A. Young around 1900, it has been known that the equivalence classes of the
irreducible representations (over a field of characteristic 0) of the symmetric group
Sn are in 1-1 correspondence with the Young diagrams with n boxes. (See, for
example, [6].) In 1940-41, T. Nakayama [14] studied20) the reduction modulo a
prime p of the irreducible representations of Sn. Since the reduction modulo p of
an object is, more or less, to look at the remainder of the object when it is divided
by p, it seems necessary, for the study of the reduction modulo p of an irreducible
representation of Sn, to consider the remainder of “Y ÷ p” for a Young diagram Y .
Although this is merely a thought of the present author after reading Nakayama’s
paper, Nakayama [14], in fact, defined a notion analogous to the remainder for a
Young diagram, and introduced the notion of hooks of a Young diagram precisely
for that purpose. For a Young diagram Y , the hook H(x) = HY (x) of a box x ∈ Y
is the set of boxes of Y directly below or to the right of x, including x itself. In the
case when Y and x are as in Fig. 5, HY (x) consists of the boxes y1, y2, . . . , y5 and
x itself.

Y =

a1

a2

a3 x y1 y2 y3

a4 y4

a5 y5

a6

Figure 5 Figure 6. Y − H(x)

Let H be a hook of a Young diagram Y . If we remove H from Y and push
the boxes that lie below or to the right of H upward and leftward, then we get a
new Young diagram Y ′. We write Y ′ = Y − H and say that Y ′ is obtained by
subtracting H from Y . Compare Fig. 5 and Fig. 6. The number of boxes in a hook
H is called the length of the hook H and is denoted by |H|. The length |H(x)| of
the hook H(x) in Fig. 5 is 6. In general, if H is a hook of a Young diagram Y of
length kn with positive integers k and n, then we have:

Y − H = (· · · ((Y − H1) − H2) · · · ) − Hk,



14 NORIAKI KAWANAKA

where, for 1 ≤ i ≤ k, Hi is a suitable hook of (· · · ((Y − H1) − H2) · · · ) − Hi−1

of length n. Starting from a given Young diagram, and subtracting hooks whose
lengths are multiple of n successively, we eventually get a Young diagram cn(Y )
that has no hook of length n. As shown in [14], such a Young diagram cn(Y ), which
may be the empty Young diagram ∅, is independent of the subtraction process, and
depends only on Y and n. We call cn(Y ) the n-core of Y , which may be considered
as the remainder of “Y ÷ n”21).

Nakayama [14] gave another method that is, in some cases, more convenient in
describing the hook subtraction. The Young diagram Y in Fig. 5 is often identified
with the non-increasing positive integer sequence (partition) (9, 8, 6, 5, 5, 2), which
indicates that the first row of Y consists of 9 boxes, the second row 8, the third
row 6, ... The same diagram is also identified with the set of positive integers
{14, 12, 9, 7, 6, 2} = {|H(ai)| | 1 ≤ i ≤ 6}, where, for 1 ≤ i ≤ 6, the box in the
first column and the i-th row of Y is denoted by ai; this latter numbers are called,
in [14], the β-numbers of Y . The β-numbers of the Young diagram Y − H(x) in
Fig. 6 are {14, 12, 7, 6, 3, 2}, which can be obtained from those of Y by deleting 9
and adjoining 3. Moreover, the difference 9 − 3 = 6 is equal to the length of the
hook H(x). In general, if H is a hook of a Young diagram Y , then the β-numbers
of Y −H are obtained from those of Y by deleting a number s from the β-numbers
of Y and adjoining a number s′ smaller than s and not contained in the β-numbers
of Y ; moreover, we always have s−s′ = |H|. The converse of this is also true. This
process can be visualized, if we use a board shown in Fig. 7. This board consists of
squares that are in 1-1 correspondence with N = {0, 1, 2, . . .}. A stone is placed at
each square corresponding to a member of the β-numbers of a given Young diagram
Y . Subtracting a hook from Y exactly corresponds to moving a stone on the board
to an unoccupied square with a smaller numbering. In Nakayama [14], although
such a board does not appear, an equivalent statement in terms of the β-numbers
mentioned above is given.

We fix a positive integer l. Let P be the set of possible arrangements of l stones,

p = 0 1 2© 3 4 5 6© 7© 8 9© 10 11 12© 13 14© 15 16 17

Figure 7. a board and stones

at most one for each square, on the board as in Fig. 7. Let ϕ : P −→ 2P be defined
by

ϕ(p) = {(p \ {s}) ∪ {s′} | s ∈ p, s′ ∈ N \ p, 0 ≤ s′ < s}, p ∈ P,

where p ∈ P is identified with the corresponding subset of N. Let Q be the set of
Young diagrams whose rows are at most l. Let ψ : Q −→ 2Q be defined by

ψ(Y ) = {Y − H(x) | x ∈ Y }, Y ∈ Q.

Two algorithms (P,ϕ) and (Q,ψ) are isomorphic under an isomorphism indicated
above22). We call the isomorphism class of these algorithms the Nakayama algo-
rithm, and (P,ϕ) and (Q, ψ) the one-line realization23) and the Young realization
of the Nakayama algorithm, respectively.

It is easy to see that the one-line realization (P,ϕ) of the Nakayama algorithm
is a finitely branching plain algorithm24). Hence, by the general theory in Section
2, we have, for p ∈ P , the notion of the diagram of 〈p〉ϕ, and that of hooks at



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 15

p. In the present case, the diagram of 〈p〉ϕ coincides with the Young diagram25)

Y corresponding to p, and hooks at p coincide with hooks of Y . (For example, if
p ∈ P is the state corresponding to Fig. 7, then the diagram of 〈p〉ϕ coincide with
the Young diagram Y in Fig. 5.) More precisely, if we consider a Young diagram Y
as the set of boxes of it, and define a map µ : Y −→ 2Y by

(8.1) µ(x) = {y ∈ Y | x ∈ HY (y), y 6= x}, x ∈ Y,

then the diagram of 〈p〉ϕ is isomorphic to (Y, µ). Moreover, if we take a q ∈ P such
that p → q, then the diagram of 〈q〉ϕ is isomorphic to a Young diagram obtained
by subtracting a hook from Y . Thus, the correspondence between the one-line re-
alization and the Young realization of the Nakayama algorithm (in particular, the
notion of a Young diagram and its hooks, and also that of the subtraction of a
hook) is contained in the general theory of plain algorithms as a special case.
Let p ∈ P be the state depicted in Fig. 7. The end of the algorithm 〈p〉ϕ is
e = {0, 1, 2, 3, 4, 5}26). We see that the algorithm 〈p〉ϕ ∩ ϕ−1(e) is connected with
end f = {0, 1, 2, 3, 4, 6}. Moreover, 〈p〉ϕ∩ϕ−1(e)∩ϕ−1(f) has two connected compo-
nents whose ends are g = {0, 1, 2, 3, 4, 7} and h = {0, 1, 2, 3, 5, 6}, ... Hence, if we put
α1 = (e ← f), α2 = (f ← g), β1 = (f ← h), . . ., then the Dynkin diagram D(〈p〉ϕ)∗
as defined in Section 3 is given by Fig. 8. We also defined, in Section 3, a map F
that sends an arrow of 〈p〉ϕ to an element of Z+Π(〈p〉ϕ) =

∑9
i=1 Z+αi+

∑5
j=1 Z+βj .

In the Young realization, an arrow whose origin is a Young diagram Y corresponds
to a subtraction process of a hook H from Y . We associate with each box of Y an
element of Π(〈p〉ϕ), i.e. a vertex of D(〈p〉ϕ)∗ other than α∗. If Y is as in Fig. 5,
the correspondence is depicted in Fig. 9. It should be clear from Fig. 8 and Fig. 9
how the correspondence is given. Under this notation, F (Y → (Y − H)) is equal
to the sum of elements of Π(〈p〉ϕ) corresponding to the boxes in H. In particular,
if Hnw is the hook of the box at the north-west corner of Y in Fig. 9, then we have

F (Y → (Y − Hnw)) =
9∑

i=1

αi +
5∑

j=1

βj .

b r r r r r r r r rrrrrr

α∗ α1 α2 α3 α4 α5 α6 α7 α8 α9

β1

β2

β3

β4

β5

Figure 8. D(〈p〉ϕ)∗

α1 α2 α3 α4 α5 α6 α7 α8 α9

β1 α1 α2 α3 α4 α5 α6 α7

β2 β1 α1 α2 α3 α4

β3 β2 β1 α1 α2

β4 β3 β2 β1 α1

β5 β4

Figure 9

For a positive integer n, we define ϕn : P −→ 2P by

ϕn(p) = {(p \ {s}) ∪ {s′} | s ∈ p, s′ ∈ N \ {p}, 0 ≤ s′ < s, s − s′ ≡ 0 mod n}
for p ∈ P . The restriction (P,ϕn) of (P,ϕ) is plain. If we identify, for p ∈ P , the
diagram of 〈p〉ϕ with the corresponding Young diagram Y , then the diagram of
〈p〉ϕn coincides with the subalgorithm

ϕn(p) = {x ∈ Y | |HY (x)| ≡ 0 mod n},



16 NORIAKI KAWANAKA

which is the n-quotient of Y as defined in Section 3, and is isomorphic to a disjoint
sum of n Young diagrams.
The notion of n-quotient for a Young diagram was introduced by G. de B. Robinson
and used in proving Nakayama’s conjecture27) in modular representation theory of
the symmetric groups. See [6] for the definitions and applications of the notions of
cores and quotients for a Young diagram.

9. The Sato-Welter game

Here we illustrate the general theory in Section 4 in the case of the Nakayama
algorithm. The Nakayama algorithm considered as a 2-person game is known28)

by the name of ‘Welter’s game’, since C.P. Welter [23] first gave the fundamental
result (the algebraic formula for the Sprague-Grundy number at a given position)
of this game. J.H. Conway [2, Ch. 13] gave an alternative proof of Welter’s re-
sult. Welter [23] and Conway [2] describe the game only in the one-line realization
and do not mention about the Young realization. M. Sato [21], independently,
got the same result as Welter [23], but it was published much later in Japanese.
According to Sato [20], Sato’s investigation was influenced by Nakayama [14]. In
fact, Sato [18] [19] described the game in two ways, the one-line realization and
the Young realization, and remarked that the formula giving the Sprague-Grundy
number of a position of this game can be written in several seemingly different ways
including the formula (9.1) below and the one given by Welter. He also pointed out
that, in the Young realization, the formula can be written in a way similar to the
hook-length formula (see Section 10) for the degree of an irreducible representation
of a symmetric group29). The author of the present paper believes that the Young
realization is essential for the full understanding of this game30), and, hence, would
like to call it (i.e., the Nakayama algorithm as a 2-person game) the Sato-Welter
game.

The purpose of this section is to give a complete analysis of the Sato-Welter
game from a point of view rather different from that of Welter, Sato and Conway.
Our main result in this direction (Theorems 4.1 and 4.2) gives not only a formula
for the Sprague-Grundy number, but also an efficient algorithm for detecting the
next good moves at each position for a class of games that includes the Sato-Welter
game as a special case.
Let Y(n) be the n-quotient of the Young diagram Y . If we put

ε
(2)
i (Y ) ≡ |Y(2i)| mod 2, ε

(2)
i (Y ) = 0, 1,

the value of the 2-adic expansion function E(2) at the Young diagram Y is given by

(9.1) E(2)(Y ) =
∞∑

i=0

2iε
(2)
i (Y ).

For example, for the Young diagram Y in Fig. 5, we have |Y | = 35, |Y(2)| =
17, |Y(22)| = 7, |Y23)| = 2, |Y(2i)| = 0 (i = 4), and, hence, E(2)(Y ) = 1 + 2 + 22 = 7.
Hence, by Theorem 4.1, the first player has a winning strategy for the Sato-Welter
game with opening position Y 31).

Let us explain how the first player can use Theorem 4.2 to find the next good
moves at the position Y in Fig. 5. Let D(〈p〉ϕ)∗ be the Dynkin diagram in Fig. 8.
Under the map h defined by (4.2), each element of Π(〈p〉ϕ), i.e. each vertex of
the Dynkin diagram D(〈p〉ϕ)∗ other than α∗, corresponds to an element, a or b, of



GAMES AND ALGORITHMS WITH HOOK STRUCTURE 17

Klein’s four group G = 〈a, b〉 (a2 = b2 = 1, ab = ba). Composing h : Π(〈p〉ϕ) −→ G
with the map from Y to Π(〈p〉ϕ) depicted in Fig. 8 and Fig. 9, we get a map g from
Y to {a, b}. In Fig. 10, the value of g at each box of Y is given. (The value of g for
the box at the north-west corner of Y is a, and g(x) 6= g(y) for each pair (x, y) of
distinct boxes x and y with a common edge. ) We also define d : Y −→ G by

d(x) =
∏

y∈H(x)

g(y).

a b a b a b a b a
b a b a b a b a
a b a b a b
b a b a b
a b a b a
b a

Figure 10

ab a b ab a ab 1 b a
1 b a 1 b 1 ab a
b 1 ab b 1 b
a ab 1 a ab
ab a b ab a
ab a

Figure 11

In Fig. 11, the value of d at each box of Y is given. By Note 12), a good move
for the first player is to subtract from Y a hook H such that E(2)(Y − H) = 0.
Applying the third case of Theorem 4.2 (ii) with E(2)(p)(= E(2)(Y )) = 7 and t = 0,
we are led to look at the (G, 〈b〉)-quotient of Y :

(9.2) ϕ(G,〈b〉)(p) = {x ∈ Y | d(x) = 1 or b }.

a b a
a b a b a
b a b a b

b
a

Figure 12

a ab a
ab a 1 b ab
b 1 a ab b

ab
a

Figure 13

If we denote the right hand side of (9.2) by Y ′, then Y ′ is equal to the set of boxes
in Fig. 11 containing 1 or b, and, as an algorithm, is isomorphic to the disjoint
sum of the 2 × 5 rectangular Young diagram and a hook-shaped Young diagram
of length 5. We repeat for Y ′ the same calculation done above for Y . The hook
HY ′(y) of y ∈ Y ′ in Y ′ is defined by the general formula (2.1) (replacing ϕ with
ϕ(G,〈b〉)) and is equal to HY (y) ∩ Y ′. Applying the third case of Theorem 4.2 (ii)
with E(2)(p)(= E(2)(Y ′)) = 3 and t = 0, we are led to look at the (G, 〈b〉)-quotient
of Y ′. In Fig. 12, we attach to each box of Y ′ an element, a or b, of G, as was
done for Y in Fig. 1032). In Fig. 13, we attach to each box of Y ′ the product of
elements contained in the hook of that box, as was done in Fig. 11 for Y . The
(G, 〈b〉)-quotient Y ′′ of Y ′ is equal to the set of boxes containing 1 or b in Fig. 13,
and is isomorphic to the disjoint sum of the 1 × 3 and 1 × 2 rectangular Young
diagrams. We can again apply Theorem 4.2 (ii) to Y ′′. But, since, as a position of
a 2-person game, Y ′′ is isomorphic to the Nim position with heaps of size 3 and 2,
it is evident from the well-known theory of Nim (see, e.g. [4, 9.8]) that a unique



18 NORIAKI KAWANAKA

good move for the first player (at the opening position Y ′′) is to subtract from Y ′′

the hook of the box in the third row and the sixth column in Fig. 13. Hence, if Y
is the opening position, a unique good move for the first player is to subtract from
Y the hook of the same box.

10. The Greene-Nijenhuis-Wilf algorithm

This section corresponds to the general theory in Section 5. For a given Young
diagram Y , we consider the following probabilistic algorithm:
We first select, uniform randomly, a box x of a Young diagram Y . Next we select,
uniform randomly, a box y of HY (x) \ {x}, if {x} $ HY (x). If {y} $ HY (y),
we further select, uniform randomly, a box of HY (y) \ {y}. Repeating this, we
eventually arrive at a box z such that HY (z) = {z}, i.e. a box z whose hook is of
length 1. Let X = Y \ {z}, which is also a Young diagram. We repeat the whole
process taking X instead of Y . The algorithm terminates when we arrive at the
empty diagram ∅.
This probabilistic algorithm, which is due to C. Greene, A. Nijenhuis and H. S. Wilf
[3], selects a vanishing process of a Young diagram Y , which is equivalent to a
standard Young tableau [6] of shape Y .

Theorem 10.1. (Greene, Nijenhuis, and Wilf [3]) The Greene-Nijenhuis-Wilf al-
gorithm generates each standard Young tableau of shape Y with uniform probability
Πx∈Y |H(x)|/n!. In particular, the number of standard tableaux with shape Y is
equal to the inverse n!/Πx∈Y |H(x)| of the above probability.

The latter half of Theorem 10.1 gives a proof for the famous hook-length formula
(see, e.g. [6, 2.3] [11, 5.1.4]) for the number of the standard Young tableaux of a
given shape, or, equivalently, for the degree of the corresponding irreducible repre-
sentation of a symmetric group. Theorem 5.1 in Section 5 is a natural generalization
of Theorem 10.1.

11. Colored hook formula for the Nakayama algorithm

This section corresponds to the general theory in Section 7. Let (Q,ψ) be the
Young realization (see Section 8) of the Nakayama algorithm. A path

(11.1) p : Y = Y0 → Y1 → Y2 → · · · → Yl, 0 ≤ l ≤ |Y |
in (Q,ψ) is a sequence of Young diagrams Yi (0 ≤ i ≤ l) such that, for 1 ≤ i ≤ l,
Yi = Yi−1 − Hi−1 for a hook Hi−1 of Yi−1. As in Fig. 9, we attach a variable to
each box of the hook Hnw of the box at the north-west corner of Y ; if a box y of
Y lies to the south-east direction of a box x in Hnw, then we attach to y the same
variable as attached to x. For a hook H of Y or of a subdiagram of Y , we denote
by [H] the sum of variables attached to the boxes of H. To a path p of (Q,ψ) given
by (11.1), we attach the polynomial

[p] =
l−1∏
k=0

(
k∑

j=0

[Hj ]).

(If p is of length 0, we put [p] = 1.) The colored hook formula for (Q, ψ) is given
as follows:

(11.2)
∑
p

1
[p]

=
∏
x∈Y

(
1 +

1
[HY (x)]

)
,



NOTES 19

where the sum on the left hand side is taken over the set of paths p in (Q, ψ) whose
origin is a given Young diagram Y . In Nakada [12], the formula (11.2) is written
explicitly for the case when Y is the 2 × 2 Young diagram; even in that case, the
left hand side of (11.2) is a rather long sum.
Let X be an m×n rectangular Young diagram, which we consider as an algorithm
(see (8.1)). Let p be the box at the south-east corner of X; X is a principal plain
algorithm generated by p. Let Y1 (resp. Y2) be the Young diagram that consists of
the (m − 1) (resp. (n − 1)) boxes of X \ {p} on the east (resp. south) side of X.
The disjoint sum Y = Y1 t Y2 is the diagram of X. (In the terminology of Section
6, Y is the basic diagram of the principal plain diagram X.) The formula (11.2) for
this Y is the ‘oldest’ colored hook formula first appeared in the paper [3] of Greene,
Nijenhuis and Wilf.

Notes

1)P may be empty.
2)For example, in Gaussian elimination to solve a system of linear equations, the elimination

process is not uniquely determined.
3)We are considering, in the terminology of [2], impartial games.
4)This is essentially the same notion as the ‘product of directed graphs’.
5)The details will appear elsewhere.
6)See Note 24) for an example of a plain algorithm that is not finite, and an example of a finite

plain algorithm that is not finitely branching.
7)More precisely, the points and the arrows of the algorithm 〈p〉ϕ can be explicitly described

using only the diagram Yp and the axioms (P1)-(P4).
8)Most results in this section can be generalized, under a suitable formulation, to the finite plain

algorithms.
9)In this paper, the term ‘graph’ means, unless otherwise mentioned, a non-oriented simple

graph.
10)If (P, ϕ) is connected, then its Dynkin diagram D(P )∗ is a tree.
11)An error in the Japanese version has been corrected.
12)Assume that E

(2)
ϕ (p) = 0. If ϕ(p) = ∅, then, by definition, the second player wins. On the

other hand, if ϕ(p) 6= ∅, then, by Part (ii) of Theorem 4.1, we have E
(2)
ϕ (p′) > 0 for any choice

p′ ∈ ϕ(p) of the first player, and hence, by Part (i) of Theorem 4.1, the second player can choose a

position p′′ ∈ ϕ(p′) such that E
(2)
ϕ (p′′) = 0. Continuing this way, the second player always wins.

The winning strategy for the first player in the case E
(2)
ϕ (p) > 0 is similar.

13)Some authors call this the Grundy number. See [2, Ch. 11] for the Sprague-Grundy theory.
14)See [2, Ch. 6]. The well-known game called Nim [2, Ch. 11] [4, 9.8] is a very special case of

the game considered in Section 4.
15)If we try to find next good moves at a position p using the method given in Note 12), then

we must know for which q ∈ ϕ(p) the equality E
(2)
ϕ (q) = 0 holds. For that purpose, it seems, in

general, inevitable to calculate the values E
(2)
ϕ (q) for all q ∈ ϕ(p).

16)Since ϕ(G,〈ab〉) = ϕ2, the case corresponding to the subgroup 〈ab〉 can be treated without

mentioning Klein’s four group.
17)An error in the Japanese version has been corrected.
18)This notion was introduced by Peterson. See [1] or [16] for its definition.
19)The condition (b) can be applied in a wider context than the condition (a).
20)Nakayama studied this problem under the influence of R. Brauer’s modular representation

theory of a finite group.
21)Nakayama [14] conjectured that, for a prime number p, two irreducible representations of Sn

belong to the same p-block, if and only if the Young diagrams corresponding to them have the
same p-core. Although this conjecture was subsequently proved by Brauer and G. de B. Robinson,

it is still called Nakayama’s Conjecture (in the representation theory of the symmetric groups).
See [6, Ch. 6].



20 NOTES

22)A Young diagram with l − k rows (1 ≤ k ≤ l) corresponds to an element of P containing

0, 1, . . . , k − 1.
23)Some authors call a board (with stones) like the one in Fig. 7 a ‘Maya diagram’, which

presumably comes from the fact that M. Sato [19] [21] called the game treated in Section 9
(especially the one-line realization of it) ‘Maya game’.
24)The algorithm (P, ϕ−1) is plain but is not finite. If we generalize the board in Fig. 7 so that

the squares of the board corresponds not only to natural numbers but also to transfinite ordinals,
then we get a plain algorithm that is finite but is not finitely branching. See Kayada [10], where

the ‘transfinite Sato-Welter game’ is analyzed.
25)From our point of view, there is no intrinsic difference between a Young diagram and its

transpose.
26)We are still identifying an element of P with the corresponding subset of N.
27)See Note 21).
28)See, e.g. [2, Ch. 13].
29)But, even in Sato’s proof [21] (which is quite different from those of Welter and Conway), the

Young realization, apparently, does not play a significant role.
30)The belief is based on: Theorem 2.5 which shows the importance of the notion of a plain

diagram in the theory of plain algorithms, and Theorem 4.2 which shows the importance of the

same notion in the game-theoretical context.
31)As already mentioned in Section 4, (9.1) gives the Sprague-Grundy value of Y . Welter [23],

Sato [21] and Conway [2] gave another formula for the Sprague-Grundy value of Y (or the corre-
sponding position in the one-line realization) using nim addition. As Sato [19] pointed out, this

one is equivalent to (9.1).
32)In Fig. 12, two connected components of Y ′ are treated independently; the element a is

attached to the box at the north-west corner of each connected component.

References

[1] J. B. Carrell, Vector fields, flag varieties and Schubert calculus, In: Proceedings of the Hyder-

bad conference on algebraic groups, the Univ. of Hyderbad, Hyderbad, 1989, (eds. S. Ramanan
et al.), Manoj Prakashan, Madras, (1991), 23-57.

[2] J. H. Conway, On numbers and games, Academic Press, (1976).
[3] C. Greene, A. Nijenhuis and H. S. Wilf, A probabilistic proof of a formula for the number of

Young tableaux of a given shape, Advances in Math., 31 (1979), 104-109.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press,

(1960).

[5] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press, (1990).
[6] G. James and A. Kerber, The representation theory of the symmetric groups, Addison-Wesley,

(1981).
[7] N. Kawanaka, Sato-Welter game and Kac-Moody Lie algebras, In: Topics in combinatorial

representation theory, RIMS Kôkyûroku, 1190 (2001), 95-106. http://www.kurims.kyoto-
u.ac.jp/∼kyodo/kokyuroku/contents/pdf/1190-8.pdf

[8] N. Kawanaka, Games, algorithms and representation theory (in Japanese), the abstract of
an invited talk presented at the annual meeting 2008, Math. Soc. Japan.

[9] N. Kawanaka, Games with hook structure (in Japanese), In: Proc. the 55th Symp. Algebra
(2010), 195-208.

[10] T. Kayada, Some generalizations of Sato’s game (in Japanese), In: Combinatorial represen-
tation theory and its applications, RIMS Kôkyûroku, 1738 (2011), 24-33.

[11] D. E. Knuth, The art of computer programming, vol. 3 (Sorting and searching), 2nd. ed.,
Addison-Wesley, (1998).

[12] K. Nakada, Colored hook formula for a generalized Young diagram, Osaka J. of Math., 45
(2008), 1085-1120.

[13] K. Nakada and S. Okamura, An algorithm which generates linear extensions for a gener-
alized Young diagram with uniform probability, In: Proceedings of the 22nd International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 933-940.

[14] T. Nakayama, On some modular properties of irreducible representations of a symmetric
group, I, II, Jap. J. Math., 17 (1940), 165-184, (1941), 411-423.



NOTES 21

[15] S. Okamura, An algorithm which generates, uniform randomly, standard Young tableaux in

a generalized sense (in Japanese), Master’s thesis, Osaka University, 2003.
[16] R. A. Proctor, Miniscule elements of Weyl groups, the numbers game, and d-complete posets,

J. Algebra, 213 (1999), 272-303.
[17] R. A. Proctor, Dynkin diagram classification of λ-miniscule Bruhat lattices and of d-complete

posets, J. Algebraic Combin., 9 (1999), 61-94.
[18] M. Sato, On a game (notes by K. Ueno)(in Japanese), In: Proceedings of the 12th symposium

of the Algebra Section of the Mathematical Society of Japan, (1968), 123-136.
[19] M. Sato, Mathematical theory of Maya game (notes by H. Enomoto)(in Japanese), Problems

of game-playing and puzzle-solving by computer, RIMS Kôkyûroku, 98 (1970), 105-135.
[20] M. Sato, preface, Sugaku no Ayumi 15 (1970), 1-8.
[21] M. Sato, On Maya game (notes by H. Enomoto)(in Japanese), Sugaku no Ayumi 15 (1970),

73-84.

[22] J. R. Stembridge, Miniscule elements of Weyl groups, J. Algebra, 235 (2001), 722-743.
[23] C. P. Welter, The theory of a class of games on a sequence of squares, in terms of the

advancing operation in a special group, Indag. Math., 16 (1954), 194-200.

Department of Mathematical Sciences, School of Science and Technology, Kwansei
Gakuin University, Sanda, Hyogo 669-1337, Japan


