1. 大偏差原理, Cramer の定理

 $\mathbf{Ex.1.1}$. 標準正規分布 N(0,1) に従う独立な確率変数列 $\{X_k, k=1,2,\cdots\}$ に対して $\hat{S}_n=rac{1}{n}\sum_{k=1}^n X_k$ とする .

(1) \hat{S}_n は $N(0,rac{1}{n})$ に従う事を確認し,それより次をしめせ:

$$P\left(\hat{S}_n \ge y\right) = \sqrt{\frac{n}{2\pi}} \int_x^{\infty} e^{-\frac{n}{2}y^2} dy \le \sqrt{\frac{n}{2\pi}} e^{-\frac{n}{2}x^2} \int_x^{\infty} e^{-\frac{n}{2}(y-x)^2} dy = \frac{1}{2} e^{-\frac{n}{2}x^2}.$$

(2) 任意の c>0 に対して次をしめせ

$$P\left(\hat{S}_{n} \geq y\right) \geq \sqrt{\frac{n}{2\pi}} \int_{x}^{x + \frac{c}{\sqrt{n}}} e^{-\frac{n}{2}y^{2}} dy \geq \sqrt{\frac{1}{2\pi}} \int_{0}^{c} e^{-\frac{y^{2}}{2}} dy \cdot e^{-\sqrt{n}x^{2}} e^{-\frac{n}{2}x^{2}}.$$

(3) (1), (2) より、任意の y > 0 に対して次をしめせ:

$$\lim_{n \to \infty} \frac{1}{n} \log P\left(\hat{S}_n \ge y\right) = -\frac{y^2}{2}.$$

 $\mathbf{Ex.1.2.}$ R 上の確率測度 μ の <u>キュムラント母関数</u> ψ を $\psi(s) = \log \int_{\mathbf{R}} e^{sx} \mu(dx), \ s \in \mathbf{R}$ により定める . μ が $Ber(p), \ N(0,v)$ および $Exp(\lambda)$ のとき , ψ はそれぞれ以下になることをしめせ .

確率分布
$$\psi$$
 の定義域 $Ber(p)$ $\log(pe^s+q)$ ${f R}$ $N(0,v)$ $\dfrac{1}{2}vs^2$ ${f R}$ $Exp(\lambda)$ $\log\lambda-\log(\lambda-s)$ $(-\infty,\lambda)$

 $\mathbf{Ex.1.3}$. 任意の実数 s に対して確率測度 μ の \underline{Cramer} 変換 μ_s を

$$\mu_s(dx) = e^{sx-\psi(s)}\mu(dx),$$
 ただし ψ は μ のキュムラント母関数

と定義する. μ_s は確率測度であること,すなわち $\int_{\mathbf{R}} 1\mu_s(dx) = 1$ をしめせ. μ が Ber(p), N(0,v) および $Exp(\lambda)$ のとき, μ_s は以下になることをしめせ.

確率分布
$$\mu_s$$
 $Ber(p)$ $Ber\left(\frac{e^sp}{q+e^sp}\right)$ $N(0,v)$ $N(s,v)$

$$Exp(\lambda)$$
 $Exp(\lambda - s)$ $(\forall s < \lambda)$

 $\mathbf{Ex.1.4.}$ R 上の確率測度 μ のキュムラント母関数 ψ と Cramer 変換 μ_s の間の次の関係をを示せ:

$$\psi'(s) = \int x\mu_s(dx), \quad \psi''(s) = \int x^2\mu_s(dx) - \left(\int x\mu_s(dx)\right)^2$$

すなわち確率分布 μ_s に従う Y に対して $\psi'(s)=E[Y],\quad \psi''(s)=Var[Y]$ である.特に, $\psi''(s)>0$ である.

 $\mathbf{Ex.1.5.}$ 前問より, $s \to \psi'(s)$ は単調増大である.よってその逆関数 $x \to s(x)$ が存在する.逆関数の定義より $\psi'(s(x)) = x$,よって前問より $\mu_{s(x)}$ に従う Y に対して E[Y] = x である. μ が Ber(p),N(0,v) および $Exp(\lambda)$ のとき,s(x) を計算せよ.

 $\mathbf{Ex.1.6.}$ $\{X_k, k=1,2,\cdots\}$ は独立確率変数列で,それぞれ分布 μ に従うとする. $E[X_k]=m$ が存在し,さらに μ のキュムラント母関数 ψ が θ の近傍で定義されているとする.次をしめせ.

(1) x>m である任意の x に対して $A_x=\{(x_1,\cdots,x_n); \frac{x_1+\cdots+x_n}{n}>x\}$ とすると

$$P(\hat{S}_n > x) = \int_{A_x} 1\mu(dx_1) \cdots \mu(dx_n)$$

$$= \int_{A_x} \exp(-s \sum_{k=1}^n x_k + n\psi(s))\mu_s(dx_1) \cdots \mu_s(dx_n)$$

$$\leq \exp(-n\{sx - \psi(s)\}) \int_{A_n} \mu_s(dx_1) \cdots \mu_s(dx_n).$$

(2) s=s(x) とすると,中心極限定理より $\int_{A_x}\mu_s(dx_1)\cdots\mu_s(dx_n)\to \frac{1}{2}$ をしめせ. $Hint:\ s=s(x)$ の時,分布 μ_s に従う確率変数の平均は x である.

Ex.1.7. 前問の続き . c>0 に対して $A_{x,c}=\{(x_1,\cdots,x_n);x<\frac{x_1+\cdots+x_n}{n}< x+\frac{c}{\sqrt{n}}\}$ とする .

(1) 次を確認せよ:

$$P(\hat{S}_n > x) \ge \int_{A_{x,c}} 1\mu(dx_1) \cdots \mu(dx_n)$$

$$\ge \exp(-n\{sx + \frac{c}{\sqrt{n}} - \psi(s)\}) \int_{A_{x,c}} \mu_s(dx_1) \cdots \mu_s(dx_n).$$

(2) s=s(x) とすると,中心極限定理より任意の b>0 に対して $\int_{A_{x,c}}\mu_s(dx_1)\cdots\mu_s(dx_n)\to\int_0^cN(0,v),\, ただし,<math>v=\psi''(s)$ をしめせ.

 $\mathbf{Ex.1.8.}$ 前問の続き $. \ x \to s(x)$ の定義域上 $I(x) = x \cdot x(s) - \psi(s(x))$ とする .

- $(1)\ I'(x)=s(x),\ I''(x)=\psi''(s(x))^{-1}$ をしめせ、また I(m)=I'(m)=0 をしめせ、これより、すべての x に対して $I(x)\geq 0$ かつ $I(x)=0\iff x=m$ をしめせ、
- (2) Ex.1.6. および Ex.1.6. より任意の x > m に対して

$$\lim_{n \to \infty} \frac{1}{n} \log P(\hat{S}_n \ge x) = -I(x)$$

をしめせ.x < m の場合にも同様の結論が示される.

Ex.1.9. 前問の続き I は

$$I(x) = \sup_{s} (s \cdot x - \psi(s))$$

とも書く事ができることをしめせ.

 $\mathbf{Ex.1.10.}$ μ が Ber(p), N(0,v) および $Exp(\lambda)$ のとき,I は以下になることをしめせ.

確率分布

$$Ber(p) x \log \frac{x}{p} + (1-x) \log \frac{1-x}{q}$$

$$N(0,v) \qquad \frac{1}{2v}x^2$$

$$Exp(\lambda)$$
 $\lambda x - 1 - \log(\lambda x)$

2. 条件付き確率,条件付き期待値

 $\mathbf{Ex.2.1.}$ (無記憶性) 幾何分布に従う確率変数 X に対して次を示せ.

$$P(X \ge m + n | X \ge m) = P(X \ge n), \quad \forall m, n \ge 0.$$

Poisson 分布 $Po(\lambda), Po(\mu)$ に従うとき、次を示せ.

$$P(X=k|X+Y=n) = \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}, \quad 0 \le k \le n.$$

 $\mathbf{Ex.2.2.}$ X,Y は独立な確率変数で、ともに幾何分布 Ge(p) に従うとき、次を示せ.

$$P(X = k | X + Y = n) = \frac{1}{n+1}, \quad 0 \le k \le n$$

 $\mathbf{Ex.2.3.}$ 1,2,3,4 の番号がついた 4 つのボールが入った袋の中から 1 個とりだし,さらにもう 1 個とりだす.最初のボールの番号を X とし,Y を

$$Y = \begin{cases} 1 &$$
 とり出した 2 つのボールのうち少なくとも 1 つの番号が 3 以上, -1 それ以外

とする.このとき,E[Y|X=k], k=1,2,3,4 を求めよ.

 $\mathbf{Ex.2.4.}$ (Partition Rule 全確率の公式) $\{B_1, B_2, \cdots\}$ が確率空間 (Ω, \mathcal{F}, P) の分割であるとする. すなわち, B_k 達は互いに素であり, その和集合は Ω であるとする.

- (1) 任意の $A\in\mathcal{F}$ に対して全確率の公式を確かめよ: $P(A)=\sum_{k=1}^{\infty}P(A|B_k)P(B_k)$.
- (2) 確率変数 X に対して次をしめせ: $E[X] = \sum_{k=1}^{\infty} E[X|B_k]P(B_k)$.
- (3) さらに,任意の $A\in\sigma\{B_1,B_2,\cdots\}$,すなわち $\{1,2,\cdots\}$ の任意の部分集合 M に対して $A=\bigcup_{k\in M}B_k$ と表される A に対して次をしめせ: $E[X,A]=\sum_{k\in M}E[X|B_k]P(B_k)$.

 $\mathbf{Ex.2.5}$. A さんと B さんが ABAB の順にさいころを投げ、先に 6 が出た方を勝ちとする . A さんが勝つ確率をもとめよ. Hint: 最初の A さんの結果によって分割する .

 $\mathbf{Ex.2.6}$. 表が出る確率が p のコインをくりかえし投げる.初めて表が出るまでに裏が出る回数を X とするとき,全確率の公式を用いて $E[X]=rac{q}{n}$ であることを示せ.

Hint:1回目の結果によって分割する.

 $\mathbf{Ex.2.7}$. 表が出る確率が p のコインをくりかえし投げる . 初めて 2 回続けて表または裏がでるまで投げる回数を X とする . 全確率の公式を用いて $E[X] = \frac{2+pq}{1-na}$ をしめせ .

Hint: 合計 4 通りの 1 回目と 2 回目の結果によって分割する.

 $\mathbf{Ex.2.8.}$ ある乱数発生装置は $Poisson~(\lambda)$ に従う非負整数値確率変数 N を発生する. この装置が発生した N に対して N 回コインを投げ,表の出る回数を X,裏の出る回数を Y とする.X と Y は独立であることをしめせ.

$$Hint:\ x\geq 0, y\geq 0$$
 に対して $P(X=x,Y=y)=P(\{X=x,Y=y\}\cap\{N=x+y\})$ である.一方 $P(X=x)=\sum_{n=0}^{\infty}P(X=x,N=n)$ である.

Def.&Ex.2.9. (確率変数の条件付き密度関数 $(conditional\ density\ function))$ $P((X,Y)\in dxdy)=f(x,y)dxdy$ とすると、 $P(X\in dx)=f_X(x)dx$, ただし $f_X(x)=\int_{\mathbf{R}}f(x,y)dy$ である.この時 X の下での Y の条件付き期待値 $E[Y|X](\omega)$ を

$$E[Y|X](\omega) = \int_{\mathbf{R}} y \frac{f(x,y)}{f_X(x)} dy$$
 if $X(\omega) = x$,

により定める . 任意の $A \in \mathcal{B}(\mathbf{R})$ に対して $E[E[Y|X], X \in A] = E[X, X \in A]$ を確かめよ .

 $\mathbf{Ex.2.10.}$ $\sigma_i>0, i=1,2,\ |
ho|<1$ とする $\mathbf{.R}$ 2-値確率変数 (X_1,X_2) の同時密度関数 $\phi(x_1,x_2)$ が

$$\begin{split} \phi(x_1,x_2) = & \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ & \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x_1-m_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-m_1)(x_2-m_2)}{\sigma_1\sigma_2} + \frac{(x_2-m_2)^2}{\sigma_2^2}\right]\right\} \end{split}$$

で与えられるとき、 (X_1,X_2) は平均ベクトル (m_1,m_2) ,共分散行列 $A=\begin{pmatrix}\sigma_1^2&
ho\sigma_1\sigma_2\\
ho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix}$ の 2 次元正規分布に従うと言う.この時、

(1) $X_1 = x$ の下での X_2 の conditional density $\phi(x_2|x_1)$ を求めよ.

$$(2) \ E[X_2|X_1] = m_2 + rac{\sigma_2 \cdot
ho}{\sigma_1} (X_1 - m_1), \ Var[X_2|X_1] = \sigma_2^2 (1 -
ho^2)$$
 をしめせ .

3. 離散 Martingale, 条件付き期待値の演習として

基本的な性質、Martingale 変換

Ex.3.1. 確率空間 (Ω,\mathcal{F},P) 上の部分 σ -加法族の増大列 $\mathcal{F}_1\subset\mathcal{F}_2\subset\cdots$ に対して確率変数 の列 $\{M_{n-n}=0,1,2,\cdots$ が $\{\mathcal{F}_n\}$ - Martingale であるとは , (i) 各 n に対して M_n は可積分であり , (ii) 各 $n\geq 0$ に対して $E[M_{n+1}|\mathcal{F}_n](\omega)=M_n(\omega)$, $a.s.\ \omega$, が成立することである この時 , 次をしめせ .

- (1) $E[M_{n+2}|\mathcal{F}_n]=M_n$ をしめせ、任意の $m\geq n\geq 0$ に対して $E[M_m|\mathcal{F}_n]=M_n$ である.
- (2) 任意の $n \ge 1$ に対して $E[M_n] = E[M_0]$.

 $\mathbf{Ex.3.2.}$ $\{X_n,\ n=1,\cdots\}$ を独立同分布の可積分な確率変数で $E[X_k]=0$ であるとする $\mathcal{F}_n=\sigma\{X_1,\cdots,X_n\}$ とする . そのとき M_0 を定数 , $M_n=X_1+\cdots+X_n, n\geq 1$ とおくと ,

- (1) $\{M_n\}$ が $\{\mathcal{F}_n\}$ -Martingale であることをしめせ .
- (2) $Var[X_k]=1$ であるとき, $Z_n=M_n^2-n$ とすると $\{Z_n\}$ が $\{\mathcal{F}_n\}$ -Martingale である.

 $\mathbf{Ex.3.3.}$ $\{X_n\}_{n=1,\cdots}$ を独立同分布で平均 0、分散 1 であるような可積分確率変数の列とし、 $\mathcal{F}_n=\sigma\{X_k,\,k\leq n\}$ とする.また、各 $n=1,\cdots$ に対して A_n を \mathcal{F}_{n-1} -可測であり有界な確率変数の列とする.(すなわち , ある $K_n>0$ が存在してすべての $\omega\in\Omega$ に対し $|A_n(\omega)|\leq K_n$). このとき , $Y_0=0,\,Y_n=\sum_{k=1}^nA_kX_k,\,n=1,2,\cdots$ とおく.

- $(1) \,\,\, E[Y_n] = 0, \,\, E[Y_n^2] = Y_0^2 + \sum_{k=1}^n E[A_k^2]$ をしめせ.
- (2) $\{Y_n,\ n=0,1,2,\cdots\}$ は $\{\mathcal{F}_n\}$ -Martingale であることをしめせ.
- $(3) \ Z_n = Y_n^2 \sum_{k=1}^n A_k^2$ とおくと, $\{Z_n, \ n=1,2,\cdots\}$ は $\{\mathcal{F}_n\}$ -Martingale である.

 $\mathbf{Ex.3.4.}$ (前問の一般化) $\mathcal{F}_n = \sigma\{X_k, k \leq n\}$ を増大する σ -加法族の列, $\{M_n, n = 0,1,2,\cdots\}$ は $\{\mathcal{F}_n\}$ - Martingale であるとする.また A_n を有界な \mathcal{F}_{n-1} -可測確率変数の列とする (このとき列 $\{A_n\}$ を可予測過程という). $\{M_n\}$ の $\{A_n\}$ による $\underline{Martingale}$ 変換 $\{Y_n\}$ を、

$$Y_0 = 0$$
, $Y_n = \sum_{k=1}^{n} A_k (M_k - M_{k-1})$, $n = 1, 2$,

により定める . $\{Y_n, n=0,1,2,\cdots\}$ は $\{\mathcal{F}_n\}$ -Martingale であることをしめせ .

Optional Sampling Theorem

 $\mathbf{Ex.3.5.}$ $\{M_n,\,n=0,1,2,\cdots\}$ を $\{\mathcal{F}_n\}$ - Martingale , T を停止時刻であるとする.停止過程 $\{M_{n\wedge T}\}$ は適当な可予測過程 $\{A_n\}$ をとることにより $\{M_n\}$ の Martingale 変換として得られることをしめせ.

 $\mathbf{Ex.3.6.}$ $\{X_n\}_{n=1,\cdots}$ を独立同分布で $P(X_k=1)=P(X_k=-1)=\frac{1}{2}$ であるとする. M_0 はある整定数 , $M_n=M_0+X_1+\cdots+X_n,\ n\geq 1$ とおく.また $a< M_0< b$ であるような $a,b\in\mathbf{Z}$ に対して $T=\inf\{n\geq 0; M_n=a$ または $M_n=b\}$ とおく.

(1) 次の (i)(ii)(iii) をチェックせよ:

(i)
$$P(T < \infty) = 1$$
, (ii) $E[|M_T|] < \infty$, (iii) $\lim_{n \to \infty} E[M_n 1_{\{T \ge n\}}] = 0$.

- (2) Optional Sampling Theorem(OST) の結論 $E[M_T] = E[M_0]$ より $P(M_T = a) = \frac{b M_0}{b a}$. をしめせ .
- (3) $T=\inf\{n,M_n=a$ $\}$ とすると, $E[M_T]=E[M_0]$ は成立しないことをしめせ.

 $\mathbf{Ex.3.7.}$ 前問において $\{S_n^2-n\}$ は Martingale である事をしめせ . これに OST を適用して次をしめせ : $E[T]=(b-M_0)(M_0-a)$.

 $\mathbf{Ex.3.8.}$ (非対称単純ランダムウォークから定まる Martingale) $\{X_n\}_{n=1,\cdots}$ を独立同分布で $P(X_k=1)=p,\ P(X_k=-1)=q=1-p$ であるものとする M_0 はある整定数 , $M_n=M_0+X_1+\cdots+X_n,\ n\geq 0,\ Y_n=\left(rac{q}{p}
ight)^{M_n},\ n\geq 0$ とおく $M_n=M_0+M_0+M_0$

- (1) $T=\inf\{n;M_n=M_0+2\}$ とおく.直接計算より $E[Y_{T\wedge 3}]=E[Y_1]$ を確かめよ.
- (2) $\{Y_n\}$ は \mathcal{F}_n -Martingale であることをしめせ .
- (3) a,b および停止時刻 T を Ex.3.6. と同様に定める.同様の十分条件 (i)(ii)(iii) をチェック し、 $E\left[\left(rac{q}{p}
 ight)^{M_T}
 ight]=\left(rac{q}{p}
 ight)^{M_0}$ を結論せよ.それより次の公式を示せ:

$$P(M_T = a) = \frac{\left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^{M_0}}{\left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^a}.$$

(4) p>q, a=0, $M_0>0$ とする時, $Z=\inf\{n;\ M_n=0\}$ とする. $P(Z<\infty)=\lim_{b o\infty}P(M_T=0)=\left(rac{q}{p}
ight)^{M_0}$ を示せ.

Martingale 収束定理

 $\mathbf{Ex.3.9.}$ $(Polya's\ Urn)$ 壺に最初赤玉と青玉が一つずつ入っている.無作為にボールをとり出し、そのボールと同じ色のもう 1 個のボールとともに壺に戻す.この操作を n 回繰り返した後の赤玉のボールの個数を X_n (ただし $X_0=1$) とする.また、壺の中の赤玉の個数の比率を $M_n=\frac{X_n}{n+2}$ とおく.

- (1) 帰納法を用いて $P(X_n=k)=rac{1}{n+1},\ k=1,2,\cdots,n+1$ をしめせ.また $E[X_{n+1}|X_n]=rac{n+3}{n+2}X_n$ である事をしめせ.
- (2) $\{M_n\}_{\{n=0,1,\cdots\}}$ は Martingale であることをしめせ .
- (3) Martingale 収束定理より、 M_n はある確率変数 M_∞ に概収束し、 M_∞ は [0,1] 上一様分布に従う事をしめせ.

 $\mathbf{Ex.3.10.}$ (2乗可積分 i.i.d. に対する大数の強法則) $\{X_n\}_{n=1,\cdots}$ を独立同分布で $E[X_k^2]<\infty$ とする . $\mu=E[X_k]$ とし, $S_n=X_1+\cdots+X_n,\ M_0=0,\ M_n=\sum_{k=1}^n \frac{X_k-\mu}{k}$ とする .

- (1) $\{M_n\}_{\{n=0,1,\dots\}}$ は Martingale であることをしめせ .
- $(2) \sup_n E[\,|M_n|\,] < \infty$ をしめせ . Hint : シュワルツの不等式より $E[\,|M_n|\,] \le E[\,|M_n|^2\,]^{1/2}$.
- (3) $\frac{1}{n}\sum_{k=1}^{n}(X_k-\mu)=M_n-\frac{1}{n}\sum_{k=1}^{n-1}M_k$ をしめせ . Hint : $X_n-\mu=n(M_n-M_{n-1})$.
- $^{n-1}$ (4) Martingale 収束定理より、ある確率変数 M_∞ が存在し $\lim_{n\to\infty}M_n=M_\infty$ である.したがって $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nM_k=M_\infty$ も成立する.これより、大数の強法則

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (X_k - \mu) = 0, \ a.s.$$

が成立する.

一様可積分 Martingale

 $\mathbf{Ex.3.11.}$ $\Omega=[0,1]$ 上のルベーグ測度 P は確率測度である.この確率空間 (Ω,\mathcal{F},P) 上の確率変数列 $\{X_n\}$ で $E[|X_n|]=1$ あるが一様可積分ではないようなものの例を挙げよ.

Ex.3.12. ([S] P56, [F] P62, 一様可積分な関数列)

- (0) シュワルツの不等式を用いて 2 乗可積分な Y に対して $E[|Y|] \leq E[|Y|^2]^{1/2}$ をしめせ。
- (1) 確率変数列 $\{X_n\}$ が $\sup_n E[|X_n|^2]<\infty$ をみたすならば $\{X_n\}$ は一様可積分である.すなわち

$$\lim_{a \to \infty} \sup_{n} E[|X_n|; |X_n| \ge a] = 0$$

である.ヒント:チェビシェフの不等式の証明

$$E[1;|X_n|\geq a]\leq rac{1}{a}E[|X_n|;|X_n|\geq a]\leq rac{1}{a}E[|X_n|]$$
 のまねをせよ。

- (2) $\{X_n\}$ が $\sup_n E[|X_n|^2] < \infty$ をみたし、かつ $X_n \to X$, a.s. ならば以下をしめせ.
 - (i) $E[|X|] < \infty$.
 - (ii) $\sup_{n} E[|X_n X|^2] < \infty$.
 - (iii) $\lim_{n\to\infty} E[|X_n X|] = 0$. 特に $\lim_{n\to\infty} E[X_n] = E[X]$.

ヒント:(i) Fatou's lemma および Schwarz の不等式。(ii) 展開して(i) および仮定を使えばよい。(iii) (iii) より、 X_n-X に対して(1) と同様の結果がなりたつ。それより

$$E[|X_n - X|] = E[|X_n - X|; |X_n - X| \ge a] + E[|X_n - X|; |X_n - X| < a]$$

の右辺第1項を評価する。右辺第2項は、ルベーグ収束定理から評価できる。

 $\mathbf{Ex.3.13}$. 確率空間 (Ω, \mathcal{F}, P) 上の可積分な確率変数 M および部分 σ -加法族 $\{\mathcal{F}_n\}$ に対して、 $M_n=E[M|\mathcal{F}_n]$ とおく .

- (1) $\{M_n\}$ は \mathcal{F}_n -Martingale であることをしめせ、また $E[|M_n|] \leq E[|M|]$ であることをしめせ、次をしめせ:「 $\forall \delta>0,\ \exists K>0,\ such\ that\ P(|M_n|>K)<\delta\ for\ all\ n>1.$ 」
- (2) 次をしめせ:「 $\forall \epsilon > 0$, $\exists K > 0$, such that $E[|M|, |M_n| > K] < \epsilon$ for all $n \geq 1$.」
- (3) $\{M_n\}_n$ は一様可積分であることを示せ.
- (4) $\mathcal{F}_{\infty} = \lim_{n \to \infty} \mathcal{F}_n = \bigcup_{n=1}^{\infty} \mathcal{F}_n$ とする. $M_n \to E[M|\mathcal{F}_{\infty}], P$ -a.s. である.

 $Hint: (2)\ M$ 可積分 $\Rightarrow \forall \epsilon > 0, \ \exists \delta > 0, \ such that \ E[|M|,F] < \epsilon \ whenever \ P(F) < \delta.$

 $\mathbf{Ex.3.14.}$ σ -加法族の列が $\mathcal{G}_{n+1}\subset G_n\subset\cdots\subset\mathcal{G}_0$ であるとする.確率変数列 $\{Y_n\}_{n=0,1,2,\cdots}$ が $E[|Y_n|]<\infty$ かつ $n\geq 0$ に対して $E[Y_n|\mathcal{G}_{n+1}]=Y_{n+1},\ P-a.s.$ であるとき $\{Y_n\}$ は $\{\mathcal{G}_n\}$ -backward martingale であるという.この時

- (1) $\forall n \geq 1, E[Y_0|\mathcal{G}_n] = Y_n$ である.よって,前問より $\{Y_n\}$ は一様可積分である.
- (2) martingale 収束定理と同様にして次をしめせ:「ある可積分な Y_{∞} が存在して $Y_n o Y_{\infty},\ a.s.$ 」

 $\mathbf{Ex.3.15.}$ (可積分 i.i.d. に対する大数の強法則 ,) $\{X_n\}_{n=1,2,\cdots}$ は独立同分布な確率変数列で , $E[|X_n|]<\infty$ であるとする . $\hat{S}_n=rac{1}{n}\sum_{k=1}^n X_k,\,\mathcal{G}_n=\sigma\{\hat{S}_n,\hat{S}_{n+1},\cdots\}$ とする .

- (1) $\{\hat{S}_n\}$ は $\{\mathcal{G}_n\}$ -backward martingale である .
- (2) $\mathcal{G}_\infty=\bigcap_{n=1}^\infty \mathcal{G}_n$ とする.前問の結果より,ある可積分な \mathcal{G}_∞ -可測な Y_∞ が存在して $\hat{S}_n o Y_\infty$ である.
- (3) Kolmogorov の 0-1 法則より Y_{∞} は定数である.これより大数の強法則:

$$\hat{S}_n \to E[X_1], \quad P-a.s.$$

が言える.