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1. Riemann-Hilbert problem (RHP)

BOUNDARY VALUE PROBLEM IN THE COMPLEX PLANE

Γ: oriented contour (the left-hand is the + side).
m(z): unknown matrix, holomorphic in C \ Γ

Examples: 1. Γ = R, m(z) holo. in ±Im z > 0.
2. Γ = {|z| = 1}, m(z): holo. in |z| ̸= 1.

m+,m−: boundary values on Γ from the ± sides

RHP: m+ = m−v on Γ (v : the jump matrix)

We often neglect to mention the normalization condition
m(z)→ I as z →∞.
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2. RHPs behave like integrals

RHP: m+ = m−v on Γ

contour deformation� �
New contour, unknown, jump matrix.
The original RHP ⇔ new RHP.� �

continuity� �
The mapping v 7→ m is continuous.� �

deletion of a part of the contour� �
1. If v = I on Γ̂ ⊂ Γ (no jump there),

m[original] = m[with Γ̂ deleted]

2. If v ≈ I on Γ̂, m[original] ≈ m[with Γ̂ deleted]� �
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3. Nonlinear steepest descent (Deift-Zhou ’93)

An RHP m+ = m−v behaves like an integral.
An analogue of the method of steepest descent is possible.

Deform Γ if necessary and we asssume:
v = vj on Γj ⊂ {Im (−1)j−1ψ > 0} (j = 1, 2),
v1 involves exp(itψ)→ 0, v2 involves exp(−itψ)→ 0

vj → I on Γj \ {saddle point}.

m(z) is almost determined by v(z) (z near the saddle point).



4. Inverse scattering for NLS and RHP
iut + uxx − 2|u|2u = 0 · · · (NLS)
r(z, t): reflection coefficient

v1(z) :=

[
1− |r(z, 0)|2 −e−2itψ1r(z, 0)
e2itψ1r(z, 0) 1

]
, ψ1 := 2z2 +

xz

t

� �
m+(z) = m−(z)v1(z) on R,
m(z)→ I (z →∞)� �

Reconstruction formula ←INVERSE PROBLEM!

u(x, t) = 2i lim
z→∞

z m(z;x, t)12 (Ablowitz-Clarkson)

u(x, 0) 7→
x
r(z) = r(z, 0) 7→

t
r(z, t) 7→ m 7→ u(x, t)
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5. Asymptotics of NLS

1. Zakhalov-Manakov ’76: formal calculation

2. Deift-Its-Zhou ’93: proof by nonlinear steepest descent

RHP involving exp(itψ1)
ψ1 = 2tz2 + xz/t; z0 = −x/(4t) is the only saddle point

contour deformation: R→ cross as above

u(x, t) ∼ α(z0)t
−1/2 exp (4itz20 − iν(z0) log 8t)



6. Integrable Discrete NLS (IDNLS)
Ablowitz-Ladik (’75) introduced

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)−|Rn|2(Rn+1+Rn−1) = 0 (IDNLS)

cf. nonlinear optical waveguides, melting chrystal, ...
Rn is asymptotically (Y. 2014, 2015)

1. |n|/t < 2
Sum of two terms, each being t−1/2×(oscillatory factor)

2. |n|/t ≈ 2
t−1/3×(oscillatory factor)
coefficient written in terms of a sol. of the Painlevé II.

u′′ − su(s)− 2u3(s) = 0

3. |n|/t > 2
O(n−j) as n→∞

cf. formal calculation by Novokshënov about the focusing,
solitonless case



7. Asymptotics: three regions



8. IDNLS and its Lax pair

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)−|Rn|2(Rn+1+Rn−1) = 0 (IDNLS)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n- and t-parts

Xn+1 =

[
z Rn

Rn z−1

]
Xn

d

dt
Xn =

[
a complicated matrix

]
Xn

(IDNLS) is the compatibility condition.



9. Reflection coefficient

Xn+1 =

[
z Rn

Rn z−1

]
Xn

Ψn: holo. sol. in |z| > 1 , continuous in |z| ≥ 1,

Ψ∗
n: holo. sol. in |z| < 1 , continuous in |z| ≤ 1,

Ψn ∼ z−n
[
0
1

]
, Ψ∗

n ∼ zn
[
1
0

]
as n→∞.

The reflection coefficient r is defined by :

rΨn︸︷︷︸
reflection

+ Ψ∗
n︸︷︷︸

incidence

∼ const.zn
[
1
0

]
(n→ −∞).

r(z, t) = r(z) exp (it(z − z−1)2), where r(z) = r(z, 0).



10. RHP

m+(z) = m−(z)v2(z) on |z| = 1,

m(z)→ I as z →∞,

v2(z) =

[
1− |r(z)|2 −e−2itψ2 r̄(z)
e2itψ2r(z) 1

]
jump matrix

ψ2 =
1

2
(z − z−1)2 +

in

t
log z

Reconstruction formula Rn(t) = −
d

dz
m(z)21

∣∣∣∣
z=0

RHP gives {Rn}.
ψ2 has four saddle points. Their geometry (relative to |z| = 1)
determines the asymptotic behavior of Rn.
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Thank you very much!


