Asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation

Hideshi YAMANE（山根英司）
Kwansei Gakuin University（关西学院大学），Japan

ICIAM，Beijing
MSTuE42；Nonlinear waves in systems with dissipation and gain
August 11， 2015

1. Riemann-Hilbert problem (RHP)

BOUNDARY VALUE PROBLEM IN THE COMPLEX PLANE

Γ : oriented contour (the left-hand is the + side).
$m(z)$: unknown matrix, holomorphic in $\mathbb{C} \backslash \Gamma$
Examples: 1. $\Gamma=\mathbb{R}, m(z)$ holo. in $\pm \operatorname{Im} z>0$.

$$
\text { 2. } \Gamma=\{|z|=1\}, m(z): \text { holo. in }|z| \neq 1
$$

1. Riemann-Hilbert problem (RHP)

BOUNDARY VALUE PROBLEM IN THE COMPLEX PLANE

Γ : oriented contour (the left-hand is the + side).
$m(z)$: unknown matrix, holomorphic in $\mathbb{C} \backslash \Gamma$
Examples: 1. $\Gamma=\mathbb{R}, m(z)$ holo. in $\pm \operatorname{Im} z>0$.

$$
\text { 2. } \Gamma=\{|z|=1\}, m(z): \text { holo. in }|z| \neq 1
$$

m_{+}, m_{-}: boundary values on Γ from the \pm sides

$$
R H P: m_{+}=m_{-} v \text { on } \Gamma \quad(v: \text { the jump matrix })
$$

We often neglect to mention the normalization condition $m(z) \rightarrow I$ as $z \rightarrow \infty$.

2. RHPs behave like integrals

RHP: $m_{+}=m_{-} v$ on Γ

2. RHPs behave like integrals

RHP: $m_{+}=m_{-} v$ on Γ

contour deformation

New contour, unknown, jump matrix.
The original RHP \Leftrightarrow new RHP.

continuity

The mapping $v \mapsto m$ is continuous.
deletion of a part of the contour

1. If $v=I$ on $\hat{\Gamma} \subset \Gamma$ (no jump there),
$m[$ original $]=m[$ with $\hat{\Gamma}$ deleted $]$
2. If $v \approx I$ on $\hat{\Gamma}, m[$ original $] \approx m[$ with $\hat{\Gamma}$ deleted $]$

3. Nonlinear steepest descent (Deift-Zhou '93)

An RHP $m_{+}=m_{-} v$ behaves like an integral.
An analogue of the method of steepest descent is possible.
Deform Γ if necessary and we asssume:
$v=v_{j}$ on $\Gamma_{j} \subset\left\{\operatorname{Im}(-1)^{j-1} \psi>0\right\}(j=1,2)$,
v_{1} involves $\underline{\exp (i t \psi) \rightarrow 0, \quad v_{2} \text { involves } \exp (-i t \psi) \rightarrow 0}$
$v_{j} \rightarrow I$ on $\Gamma_{j} \backslash$ \{saddle point $\}$.

$m(z)$ is almost determined by $v(z)$ (z near the saddle point).

4. Inverse scattering for NLS and RHP

$$
i u_{t}+u_{x x}-2|u|^{2} u=0 \cdots(\text { NLS })
$$

$r(z, t)$: reflection coefficient

$$
v_{1}(z):=\left[\begin{array}{cc}
1-|r(z, 0)|^{2} & -e^{-2 i t \psi_{1}} \overline{r(z, 0)} \\
e^{2 i t \psi_{1}} r(z, 0) & 1
\end{array}\right], \quad \psi_{1}:=2 z^{2}+\frac{x z}{t}
$$

$$
\begin{aligned}
& m_{+}(z)=m_{-}(z) v_{1}(z) \quad \text { on } \mathbb{R} \\
& m(z) \rightarrow I(z \rightarrow \infty)
\end{aligned}
$$

Reconstruction formula \leftarrow INVERSE PROBLEM!

$$
u(x, t)=2 i \lim _{z \rightarrow \infty} z m(z ; x, t)_{12} \text { (Ablowitz-Clarkson) }
$$

4. Inverse scattering for NLS and RHP

$i u_{t}+u_{x x}-2|u|^{2} u=0 \cdots($ NLS $)$
$r(z, t)$: reflection coefficient
$v_{1}(z):=\left[\begin{array}{cc}1-|r(z, 0)|^{2} & -e^{-2 i t \psi_{1}} \overline{r(z, 0)} \\ e^{2 i t \psi_{1}} r(z, 0) & 1\end{array}\right], \quad \psi_{1}:=2 z^{2}+\frac{x z}{t}$

$$
\begin{aligned}
& m_{+}(z)=m_{-}(z) v_{1}(z) \quad \text { on } \mathbb{R} \\
& m(z) \rightarrow I(z \rightarrow \infty)
\end{aligned}
$$

Reconstruction formula $\leftarrow I N V E R S E$ PROBLEM!

$$
u(x, t)=2 i \lim _{z \rightarrow \infty} z m(z ; x, t)_{12} \text { (Ablowitz-Clarkson) }
$$

$$
u(x, 0) \underset{x}{\mapsto} r(z)=r(z, 0) \underset{t}{\mapsto} r(z, t) \mapsto m \mapsto u(x, t)
$$

5. Asymptotics of NLS

1. Zakhalov-Manakov '76: formal calculation
2. Deift-Its-Zhou '93: proof by nonlinear steepest descent

RHP involving $\exp \left(i t \psi_{1}\right)$
$\psi_{1}=2 t z^{2}+x z / t ; \quad z_{0}=-x /(4 t)$ is the only saddle point

contour deformation: $\mathbb{R} \rightarrow$ cross as above

$$
u(x, t) \sim \alpha\left(z_{0}\right) t^{-1 / 2} \exp \left(4 i t z_{0}^{2}-i \nu\left(z_{0}\right) \log 8 t\right)
$$

6. Integrable Discrete NLS (IDNLS)

Ablowitz-Ladik ('75) introduced
$i \frac{d}{d t} R_{n}+\left(R_{n+1}-2 R_{n}+R_{n-1}\right)-\left|R_{n}\right|^{2}\left(R_{n+1}+R_{n-1}\right)=0$
cf. nonlinear optical waveguides, melting chrystal, ...
R_{n} is asymptotically (Y. 2014, 2015)

1. $|n| / t<2$

Sum of two terms, each being $t^{-1 / 2} \times$ (oscillatory factor)
2. $|n| / t \approx 2$
$t^{-1 / 3} \times$ (oscillatory factor)
coefficient written in terms of a sol. of the Painlevé II.

$$
u^{\prime \prime}-s u(s)-2 u^{3}(s)=0
$$

3. $|n| / t>2$

$$
O\left(n^{-j}\right) \text { as } n \rightarrow \infty
$$

cf. formal calculation by Novokshënov about the focusing, solitonless case

7. Asymptotics: three regions

8. IDNLS and its Lax pair

$i \frac{d}{d t} R_{n}+\left(R_{n+1}-2 R_{n}+R_{n-1}\right)-\left|R_{n}\right|^{2}\left(R_{n+1}+R_{n-1}\right)=0$
\underline{n} - and t-parts

$$
\begin{aligned}
X_{n+1} & =\left[\begin{array}{cc}
z & \bar{R}_{n} \\
R_{n} & z^{-1}
\end{array}\right] X_{n} \\
\frac{d}{d t} X_{n} & =[\text { a complicated matrix }] X_{n}
\end{aligned}
$$

(IDNLS) is the compatibility condition.

9. Reflection coefficient

$$
X_{n+1}=\left[\begin{array}{cc}
z & \bar{R}_{n} \\
R_{n} & z^{-1}
\end{array}\right] X_{n}
$$

Ψ_{n} : holo. sol. in $|z|>1$, continuous in $|z| \geq 1$,
Ψ_{n}^{*} : holo. sol. in $|z|<1$, continuous in $|z| \leq 1$,

$$
\Psi_{n} \sim z^{-n}\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \Psi_{n}^{*} \sim z^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { as } n \rightarrow \infty
$$

The reflection coefficient r is defined by :

$r(z, t)=r(z) \exp \left(i t\left(z-z^{-1}\right)^{2}\right)$, where $r(z)=r(z, 0)$.

10. RHP

$$
\begin{aligned}
& m_{+}(z)=m_{-}(z) v_{2}(z) \text { on } \underline{|z|=1} \\
& m(z) \rightarrow I \text { as } z \rightarrow \infty, \\
& v_{2}(z)=\left[\begin{array}{cc}
1-|r(z)|^{2} & -e^{-2 i t \psi_{2}} \bar{r}(z) \\
e^{2 i t \psi_{2}} r(z) & 1
\end{array}\right] \text { jump matrix } \\
& \psi_{2}=\frac{1}{2}\left(z-z^{-1}\right)^{2}+\frac{i n}{t} \log z
\end{aligned}
$$

10. RHP

$$
\begin{aligned}
& m_{+}(z)=m_{-}(z) v_{2}(z) \text { on } \underline{|z|=1} \\
& m(z) \rightarrow I \text { as } z \rightarrow \infty, \\
& v_{2}(z)=\left[\begin{array}{cc}
1-|r(z)|^{2} & -e^{-2 i t \psi_{2}} \bar{r}(z) \\
e^{2 i t \psi_{2}} r(z) & 1
\end{array}\right] \text { jump matrix } \\
& \psi_{2}=\frac{1}{2}\left(z-z^{-1}\right)^{2}+\frac{i n}{t} \log z
\end{aligned}
$$

Reconstruction formula $R_{n}(t)=-\left.\frac{d}{d z} m(z)_{21}\right|_{z=0}$
RHP gives $\left\{R_{n}\right\}$.
ψ_{2} has four saddle points. Their geometry (relative to $|z|=1$) determines the asymptotic behavior of R_{n}.

Thank you very much！太感谢了！

